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Preface 

The analysis of rheological systems provides stimulating challenges to the 
development of statistical mechanics and nonequilibrium thermodynamics. A 
sound understanding of the observed behaviour of such systems in terms of 
microscopic models and the use of nonequilibrium thermodynamics to restrict the 
possible forms of constitutive equations are goals which have been a source of 
inspiration in the respective fields. In nonequilibrium thermodynamics, rheological 
systems do not admit the simple local-equilibrium hypothesis: a number of internal 
variables must be considered, so the form of the entropy cannot be assumed a 
priori; but it can be studied by prescribing a functional dependence on a set of 
these internal variables. In statistical mechanics, the geometrical complexity of the 
macromolecules requires new techniques for the analysis of transport phenomena. 
Furthermore, even those fluids composed of the simplest monatomic particles 
exhibit several kinds of rheological behaviour when they are subjected to high 
frequencies or to intense thermodynamic forces, so that rheological analysis 
becomes an important ingredient in the study of fast and nonlinear phenomena. 

These were the motivations for devoting the fifth session of the Bellaterra 
School of Thermodynamics (BEST) to the relation between rheological modelling, 
statistical mechanics and nonequilibrium thermodynamics. The aim of BeST is to 
gather together leading scientists in these areas, graduate students, and other 
researchers interested in the current developments in these fields. The school is 
addressed to fundamental questions, both theoretical and experimental, rather 
than to direct applications, To join the pedagogical features of a school with the 
stimulus of fresh information on recent advances is the goal pursued at each 
meeting of the Bellaterra School. 

The lecturers invited to the School are well known for their contributions to 
di f ferent aspects of rheology, stat ist ical  mechanics or nonequilibrium 
thermodynamics. Bird provides a clear introduction to the relation between kinetic 
models, macroscopic rheological equations and rheometric measurements. 
Joseph .presents an account of the mathematical and physical problems associated 
with hyperbolicity arising in the context of viscoelasticity. Hess studies the 
microscopic consequences of shear flows on the structure of liquids and compares 
the results obtained with kinetic theory and nonequilibrium molecular dynamics 
simulations. Rubi considers the role that time dependent hydrodynamic interactions 
play in the dynamics of polymer solutions. Grmela studies the interrelations 
between several levels of description of rheological systems, from the macroscopic 
thermodynamics to the statistical descriptions based on distribution functions, and 
the conditions of compatibility between such different descriptions. Carreau and 
Grmela discuss conformation tensor rheological models, in which distribution 
functions of molecular state variables are used as internal variables in the theory. 



IV 

Quemada analyses the complex phenomenology concerning the viscous 
behaviour of concentrated suspensions, with emphasis on biological fluids. Wolf 
describes the changes that a shear flow produces on the phase diagram of 
polymer solutions. Jongschaap contributes a broad account of the problems of 
rheological modelling using a thermodynamic approach which may be applied to 
many types of models in a unified and systematic way. Finally, de Gennes deals 
with new approaches to the problem of adhesion, in particular various forms of the 
constitutive law relating the applied stress and the rate of opening of the junction 
width in a thin ribbon. 

The reader will also find the text of some of the seminars delivered at the 
School, which complement the insights into rheology that may be gained from the 
perspectives of statistical mechanics and nonequilibrium thermodynamics. Thus, 
the book includes such topics as hard sphere suspensions, an EIT approach to 
rheology, and the formalism of fractional derivatives. 

We gratefully acknowledge the financial support of the DGICyT of the 
Spanish Ministry of Education and Science, of the DGU and the CIRIT of the 
Government of Catalonia, of the Autonomous University of Barcelona, of the 
savings bank La Caixa, and, last but not least, of the City council of Sant Feliu de 
Guixols and Murl~. Park Hotel, in the Costa Brava, where this meeting was held. 

J. Casas-V&zquez 
D. Jou 



Conl~nts 

Lectures  

Viscoelastic Behavior of Polymeric Liquids 
R.B. Bird 

Experimental Evidence for Non-Newtonian Behavior of Polymeric Liquids 
Rheometry and Material Functions 
Continuum Mechanical Ideas and Empirical Constitutive Equations 
Kinetic Theory Ideas and Dumbbell Models 
Kinetic Theory Ideas and Chain Models 

Problems Associated with the Elasticity of Liquids 
D.D. Joseph 

Physical Phenomena Associated with Hyperbolicity and Change of Type 
Conceptual Ideas 
Mathematical Theory 

Rheology and Shear  Induced Structure of Fluids 
S. Hess 

Introduction 
Pressure Tensor, Viscosity Coefficients 
The Structure of Streaming Fluids 
Concluding Remarks 

On the Dynamics of Polymers in Solution 
J.M. Rubl, J. Bonet Avalos and D. Bedeaux 

Introduction 
Equation of Motion of a Polymer 
Polymer Dynamics 
Conclusions 

Mesoscopic Dynamics and Thermodynamics:  Applications 
to Polymeric Fluids 
M. Grmela 

Introduction 
Hierarchy of Descriptions 
Thermodynamics - Geometry of the State Space 
Dynamics - Physical Foundation of Thermodynamics 
Rheological Modelling 
Thermodynamics and Dynamics of Driven Systems 
Concluding Remarks 

22 

51 

74 

99 



VL 

Confo rma t ion  Tensor  Rheological  Models  
P.J. Carreau and M. Grmela 

Introduction 
Governing Equations 
Predictions and Comparison with Experiments 
Concluding Remarks 

Biofluids as S t ruc tu red  Media: Rheology and  Flow 
Proper t ies  of Blood 
D. Quemada 

Introduction 
Main Characteristics of Blood Flows 
Blood as a Concentrated Dispersion 
Blood as a Shear-Thinning Fluid 
Blood as a Thixotropic and Viscoelastic Fluid 
Modelling of Blood Microcirculation 
Concluding Remarks 

P h a s e  Separa t ion  of F16wing Po lymer  Solut ions 
B.A. Wolf 

Introduction 
Procedures and Observations 
Calculation of Phase Diagrams 
Discussion 

Towards  a Unif ied  F o r m u l a t i o n  of Microrheological  
Models  
R.J.J. Jongschaap 

Introduction 
Theory 
Applications 
Discussion 

Adhes ion  and  Rheology (Abstract)  
P.G. de Gennes 

126 

158 

194 

215 

Sem|nAeS 

Rheology of H a r d  Sphere  Suspens ions  
B. U. Felderhof 

250 



Vii 

Extended Irreversible Thermodynamics Versus 
Rheology 
G. Lebon, D. Jou and J. Casas-Vdzquez 

Objectivity and the Extended Thermodynamic 
Description of Rheology 
P.C. Dauby 

Convection in Viscoelastic Fluids 
C.P~rez-Garcia, J. Martinez-Mardones and J. Milldn 

Fractional Relaxation Equations for Viscoelasticity 
and Related Phenomena 
T.F. Nonnenmacher 

Relaxation Functions of Rheological Constitutive 
Equations with Fractional Derivatives: Thermodynamical 
Constraints 
C. Friedrich 

A Simple One Dimensional Model Showing Glasslike 
Dynamical Behavior 
J.J. Brey and M.J. Ruiz-Montero 

Statistical Conformation of a Polymer in a Nematic Medium 
Under a Shear Flow Using the Rouse Model 
Y. Thiriet, R. Hocquart, F. Lequeux and JoF. Palierne 

On the Modelling of Stationary Heat Transfer by the 
Use of Dissipative Networks 
G. Brunk 

Thermomechanics of Porous Media Filled with 
a Fluid 
W. Derski 

257 

278 

292 

309 

321 

331 

344 

356 

367 



VISCOELASTIC BEHAVIOR OF 
POLYMERIC LIQUIDS 

R. Byron Bird 
Chemical Engineering Department and Rheology Research Center 
University of Wisconsin-Madison, Madison, WI 53706-1691, USA 

A survey is given of the three main approaches to the study of the non-linear 
constitutive equations for polymeric liquids: rheometric measurements; continuum 
mechanics results for special flows and useful empiricisms; and kinetic theories, which 
make use of various mechanical models to represent the polymer molecules. For 
further discussions see [1,2]. 

1. Experimental evidence for non-Newtonian behavior of polymeric liquids [1, 
Chapter 2] 

For incompressible fluids the laws of conservation of mass and momentum lead to 
the equations of continuity and motion [3, Chapter 3]: 

Eq. of Continuity: (V-v) = 0, (1.1) 

Eq. of Motion: p ~ t t  = -[V.rq + pg. (1.2) 

Here p is the fluid density, v(r,t) the velocity field, and g the gravitational acceleration. 
The stress tensor g may be written as the sum of two terms, 

= p5 + "c, (1.3) 

in which p is a pressure (not uniquely determined for incompressible fluids) and x is the 
"extra stress tensor", which is zero at equilibrium; ~5 is the unit tensor. 

For liquids made up of small molecules, the mechanical behavior is well described 
by the incompressible Newtonian constitutive equation [4] (this is just the linear term in 
the ordered expansion in eq. (3.14)): 

"C = -~(VV + (Vv)  t )  = -I,L~t(1), (1 .4)  



in which (Vv)t indicates the transpose of (Vv), and ~/(1) is the rate-of-strain tensor. The 

Newtonian viscosity ~t may be determined from any viscometer for which eqs. (1-4) can 
be solved (for steady-state or unsteady-state flow). 

Polymer solutions and polymer melts cannot be described by eq. (1.4) and are 
therefore non-Newtonian. One of the challenges in polymer fluid dynamics is that of 
obtaining a constitutive equation for x, containing a small number of physically 
interpretable parameters, that is capable of describing a wide range of fluid responses. 

Many experiments indicate that polymeric liquids are non-Newtonian [ 1]: 
(A) In a cone-and plate viscometer the torque needed to turn the cone is 

proportional to the angular velocity of the cone for Newtonian fluids, but not so for 
polymeric liquids. This means that for polymers the shear stress is not proportional to 
the velocity gradient. Consequently, the viscosity (defined as the proportionality factor 
between shear stress and velocity gradient) is not a constant. In fact, the viscosity may 
decrease by factors of ten to a thousand as the velocity gradient increases. Such a 
dramatic decrease in viscosity cannot be ignored in fluid dynamics calculations. Even in 
extremely dilute polymer solutions this shear thinning behavior is observed. 

(B) A cylindrical container with inside radius R is filled with a Newtonian fluid. 
When a rotating disk of radius R is placed in contact with the fluid surface, it imparts a 
tangential motion to the liquid (the "primary flow"); at steady-state there is, in addition 
to the primary flow, a "secondary flow" outward along the rotating disk, caused by the 
centrifugal force, and then downward along the cylinder wall, inward along the bottom, 
and upward near the cylinder axis. For polymeric fluids, however, there is a reversal 
of the secondary flow in the disk-and-cylinder system: the fluid moves inward along the 
rotating disk, down along the axis and then upward at the cylinder wall! 

(C) If a Newtonian fluid flows down an inclined semicylindrical trough, the 
liquid surface is flat (except near the edges where meniscus effects may be seen). 
Polymeric liquids, however, display a slightly convex surface in tilted-trough flow. 

(D) When the pumping of a Newtonian fluid through a tube is suddenly stopped, 
the fluid comes to rest almost at once. But when one stops supplying a driving force for 
the flow of a polymeric liquid in a tube, the polymeric liquid begins to retreat and then 
gradually comes to rest. This recoil is symptomatic of a fluid which can "remember" its 
past kinematic experience; the fluid does not retreat all the way to its initial 
configuration, since as time proceeds it "forgets" its kinematic history. Polymeric fluids 
are often referred to as "fluids with fading memory." 

(E) When a Newtonian liquid is being siphoned, the siphon ceases to function 
when the end of the tube is removed from the liquid. For a polymeric liquid, however, 
the tube may be withdrawn from the liquid and the siphoning continues; there may be a 
gap of several centimeters between the liquid surface and the end of the tube. This 
effect is called the tubeless siphon. 

Many other experiments showing that polymeric liquids are qualitatively different 
from Newtonian fluids are described in [1,12], where the original literature references 



are given. The behavior in expt. A is obviously not explainable by eq. (1.4). Expts. B 
and C can be explained if in steady shear flow the normal stresses (Xxx, ~yy,'~zz) are all 

different from each other; such "normal-stress phenomena" cannot be explained by eq. 
(1.4). To describe expt. D it is necessary that the stress at the present time t depend on 
the kinematic tensors at all past times t'. Finding a replacement for eq. (1.4) is an 
enormous challenge, requiring the collaboration of the experimental rheologist, the 
continuum mechanicist, and the kinetic theorist. 

2. Rheometry and material functions [5] 

Much of our present knowledge about the flow behavior of polymeric liquids has 
been obtained from measurements of stress components in carefully controlled flows. 
The two most studied flows are shearflows for which 

Vx = T(t)y; Vy = 0 ;  V z = 0 ,  (2 .1)  

where Xt) is the "shear rate," and elongationalflows for which 

Vx = -  2 L ~(t)x; Vy = -  2 L ~(t)y; Vz = g(t)z (2.2) 

where ~(t) is the "elongation rate." There is a general feeling among polymer fluid 
dynamicists that continuum or molecular theories that can describe the above flows will 
probably be successful for more complex flows. 

2.1 Shear flows 

For steady-state shear flow, with constant T, three material functions rl(~/), 

Wl(~t), and u/2(~t) are defined by 

Xyx = (2.3) 

'~xx - "Cyy = -~I/l~g 2, ( 2 . 4 )  

zyy-  x= = (2.5) 

The viscosity 11, and the first normal stress coefficient W1 are positive, and the second 
normal stress coefficient utt2 is negative. The secondary flow in the disk-and-cylinder 
experiment is related to W1, and the negative ~IS2 explains the convex surface in the 
tilted-trough flow. The ratio w2/w1 varies between about -0.1 and -0.4 for most fluids. 



The most widely studied time-dependent shear flow is the homogeneous small- 

amplitude oscillatory shearing motion, with y(t) = Re{'~r°e i°~t} , where y0 may be 

complex. For this flow ~yx(t) = Re{~°x ei°~t}, where X°x is also complex. Then 

~Pyx = -'0" ~o, (2.6) 

where '0*(co) = "0'(03) - i'0"(co) is the complex viscosity; '0'(co) describes the 

Figure 1: 
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viscous response and rl"(co) describes the elastic response. Normal stresses oscillate with 
a frequency 2co, but only a few measurements have been reported. 

Fig. 1 shows data replotted from [6] on '0, 11', and '0" (in Pa.s) and W1 (in Pa.s2), 

and with y and co in s -1, for a 1.5% solution of a polyacrylamide in a water-glycerine 
mixture. The 11 and '0' curves both begin at 110 (the zero-shear-rate viscosity), and 11' 
lies somewhat below 11; similarly LlJl and 2rl"/co both begin at '/'1,0 (zero-shear-rate first 
normal stress coefficient) and 211"/co lies below q'l .  This behavior is typical for most 

polymeric liquids. 
Another much studied time-dependent experiment is the measurement of the 

development of the stresses when ~' undergoes a step function change from y = 0 to 
~/ = Yo at t = 0. For t > 0 both the time dependent '0+(t) = "Cyx/(Y/o) and 

~ ' ~ ( t )  = (T, xx-Xyy)/(-'~) go through maxima before decreasing to their steady-state 
values. For some polymer melts the time at which the maximum occurs in ~IJl is about 



twice that for the maximum in 11 +, and the times for the maxima are inversely 
proportional to 70. 

Many other unsteady shear experiments have been performed, including stress 
relaxation after shear flow, stress relaxation after sudden shearing displacement, and 
superposition of steady flow and oscillatory motion. 

Figure 2: 
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2.2 Elongational Flows [7] 

For steady-state elongational flow the elongational viscosity ~(e) is defined by 

m .  

Xzz - Xxx = -Tie (2.7) 

(~ < 0 corresponds to biaxial stretching). For dilute solutions, many molecular theories 
suggest that ~ is monotone increasing with ~ possibly going to rather high values [8], 
although convincing experimental proof of this is lacking. Recent melt data show 11 
increasing with ~, going through a maximum, and then decreasing; for melts ~ seems to 

vary less with ~ than ~ varies with ~/. In Fig. 2 data for ~ (~) for a LDPE melt are 

shown along with the data for rl(;f) [9,10]. 
When ~ goes from 0 for t < 0 to a constant value ~0 for t > 0, the quantity 

~+(t) = ('Czz - Xxx)/(-~0) can be measured. Most data show ~÷ to be a monotone increasing 
function of time, but overshoot effects have also been observed. 

3. Continuum mechanical ideas and empirical constitutive equations [ 1,11,12] 

To describe the kinematics of a moving fluid, it is useful to introduce the notion 
of a convected coordinate system [11 ], which is imprinted in the fluid and moves with it. 
This coordinate system may be so chosen that, at the present time t, it coincides with a 
space-fixed cartesian coordinate system. In Fig. 3 a typical element from the coordinate 



system is shown at some past time t' and at the present time t. For past times the 
coordinate system is in general nonorthogonal. At each fluid particle a set of convected 

base vectors gi(r,t,t') can be defined; they are the base vectors at time t' associated with 
a fluid particle which is located at r at time t. At time t' = t the base vectors coincide 

Figure 3: 
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with the unit vectors Gi. A set of reciprocal convected base vectors ~' is given by 

relations like ~1 = [g2xg3] for incompressible fluids. As the fluid particle moves along, 
the convected base vectors change with time as follows [1, p. 486]: 

t ~ t t 0 gi(r,t ,t) = [gi(r , t , t ) .Vv(r , t , t ) ] ,  
Ot' (3.1) 

^ i  , , ^ i  , 
~t' g (r, t , t)  = - [Vv(r,t , t  ).g (r , t , t )] .  (3.2) 

The convected base vectors may be described in terms of their cartesian components 
[1, p. 485]: 

A t i 
gi(r,t,t ) = ~ ~SjAji(r,t,t ), (3.3) 

J 

^ i  g (r , t , t)  = ~ Eij(r,t,t')Gj. (3.4) 
J 

Both Aij and Eij become the Kronecker delta ~Sij at time t' = t. From eqs. (3.1)-(3.4) it 
can be shown that the relations 



a-~ Aij(r,t,t') = ~ (Vv)itn(r,t,t')Anj(r,t,t'), 
n 

(3.5) 

~gt' Eij(r,t,t) = Ein(r,t,t'XVv (r,t,t'), 
n 

(3.6) 

describe how Aij and Eij change with t' following a fluid particle, "r,t". 

3.1 Stress and strain tensors and their derivatives 

The convected base vectors are of interest because the dot products, 
A "  

gij = (gi'gj) or glj = (~i.~j), describe the deformation of a fluid element independently 
of its orientation in space. Of particular interest is the deformation at time t' relative to 
the reference configuration at time t, which can be written with the help of eqs. (3.3) 
and (3.4) as 

[gij(r,t,t ) -  gij(r,t,t)] = E A'kiAkj - ~ij ---- B i ] -  ~ij -- ,y[O], 
k 

(3.7) 

^ij , "" 
-[g ( r , t , t ) -  ~lJ(r,t,t)] = ~ij - E E'ikEjk = ~ i j -  Bij  = ~[Olij, 

k 
(3.8) 

in which primes on the tensor components indicate functions of r, t and t'. Both relative 
finite strain tensors "y[0](r,t,t') and T[0](r,t,t') are zero for t' = t, and both simplify to the 

infinitesimal strain tensor of linear viscoelasticity. The tensors B -1 and B are called the 
Cauchy and Finger strain tensors, respectively [1, p. 427]. 

Successive time derivatives (0/0f, a2/at'2, ...) may be taken of eqs. (3.7) and (3.8) 
to generate rate-of-strain tensors, second-rate-of-strain tensors, etc., ~[n], ~/[n] at time t', 
by using eqs. (3.5) and (3.6). The nth rate of strain tensors at time t' = t, ~(n) and ~/(n), 
may also be generated by "convected differentiation" [1, p. 492], 

'y[n+U(r,t,t) = )gn+l)(r,t) = D----3gn) + { ( V v ) . ~  n) + ~ n ) . ( V v ) t } ,  
Dt- -  

(3.9) 

"Ytn+l](r,t,t) = ) '(n+l)(r,t) = D~t ~t(n) - { (Vv)t '~'(n) + ~/'(n)'(Vv) }, (3.10) 

in which ~(1) and 7(1) are both defined to be Vv + (Vv) t. 

The stress tensor at the fluid particle "r,t" at time t' may be written in terms of 
covariant or contravariant convected components. 



A ~ A i  ° x(r,t,t') Z Z  ' ' J ' = gi(r,t,t  )gj(r,t ,t  )'~ ( r , t , t )  (3.11) 
i j 

h i . ,~ '  A ~ y , y ,  I J v , ,  ! g ( r , t , t )g  (r,t,t)Xlj(r,t,t ). (3.12) 
i j 

It may also be written in terms of the fixed cartesian components 

x(r,t,t') = ~ ~ 8iSjxij(r,t,t'). (3.13) 
i j 

The convected and fixed components are related according to the usual rules of  tensor 

transformations [1, p. 495]. The derivatives (0/0f,  0 2 / ~ t ' 2 , - . . )  of ~ij and ~ij can then be 
formed; this gives sets of  tensors z[n] and "C[n] at time t'. At time t' = t the convected 
time derivatives, x(n) and X(n), are obtained exactly as in eqs. (3.9) and (3.10) with x(0) 
and x(0) both being equal to "c. 

3.2 Constitutive equations 

In a landmark publication Oldroyd [11] set down certain postulates regarding 
constitutive equations: (1) The relation between the stress and kinematic tensors for a 
fluid element should not depend on the kinematics of neighboring elements. (2) The 
constitutive equation should not depend on the motion of the element as a whole in 
space. Therefore the constitutive equation can involve any relation among the convected 

components of  the stress tensor and the gij or ~ij, involving differentiations or 
integrations of these quantities with respect to time; in terms of  fixed components 
(which are more useful for solving the equations of continuity and motion), the 
constitutive equation can involve any of the time t' quantities ~[n], ~n], 'c[n], X[n] (the 

indices in brackets indicate quantities evaluated at time t') or the same quantities at t' = t 
(indices in parentheses). 

Some progress has been made in obtaining general results for restricted classes of 
flows based upon Oldroyd's postulates: 

(a) Retarded-motion expansion [13]. For slow flows which are also slowly- 
varying in time the stress tensor can be expanded in a series: 

'1; = -bl"/(1) + b2"~'(2) - bu {~'(0"~'0)} + b3~/(3) 

-bl2{'Y(1)'~t(2) + ~/(2)'~t(1)} - b1:11("/(1):~(1))"/(1) + - -  -, (3.14) 

in which the b's are constants. The first term on the fight side gives the Newtonian 
fluid. Retention of the first three terms (including all terms quadratic in velocity 



gradients) gives the "second-order fluid." Retention of all six terms shown in eq. (3.14) 
gives the "third-order fluid." Because the series in eq. (3.14) converges very slowly, it 
is of limited value in polymer fluid dynamics. Some kinetic theories give relations 
between the b's and molecular structure [1, p. 302; 2, p. 207]. Note that bl = 130, 

52  = 1 ~I/1,O, and b l l  = uff2,0. 

(b) Criminale-Ericksen-Filbey equation [14]. For steady-state shear flows (e.g., 
axial flow in tubes, helical flow in annuli, Couette flow, cone-and-plate flow) the most 
general expression for the stress tensor consistent with Oldroyd's postulates is 

I; = -IT~(1 ) + 21-~'tl"/(2) - ~Iff2{"/(1)'T(1)], (3.15) 

in which 11, W1, and ~'2 are the properties defined in eqs. (2.3)-(2.5); they are all 

functions of the shear rate ~/= ~/91-(+ T(1):T(1)) • Eq. (3.15) has a structure similar to that 

of the second-order fluid, but the coefficients are functions rather than constants, and 
there is no restriction to flows with small velocity gradients. 

(c) Memory integral expansion [15]. For flows with small deformations, but 
with arbitrary time responses, the stress tensor can be expanded as 

"C = ft~ Ml(t't')Ti01 dt' + I f~ ft. M2(t-t',t-t') {Ti01"71ol 

+ 'Y[Ol"Yio]} d t " d t '  + .. . .  (3.16) 

The first term in this expansion gives the Lodge rubberlike liquid [12], which for 
infinitesimal deformations simplifies to the constitutive equation for linear 
viscoelasticity. Note that eq. (3.16) incorporates the idea of fading memory. 

3.3 Widely used empiricisms 

Because of the limited applicability of eqs. (3.14)-(3.16), dozens of empirical 
constitutive equations have been proposed [1, Chapters 7 and 8]. As an example of a 
differential constitutive equation we cite the widely used Oldroyd 8-constant model 
suggested in 1958 [11]: 

x + Xlx(1) + 2 ~ X3{T(1).x + x'70)} 

+ 12 X,s(tr x)7(1) + 2 £ Xc(x:7(1))8 



10 

= -I~0[T(1 ) 4- ~2 "/(2) + )~4 [~/(1)'T(1) } 

4- ~ ~'7(~/(1);~t(1))8] (3.17) 

in which B0 is the zero-shear-rate viscosity and the ~.j (j = 1, 2, .-. 7) are time constants. 

This model includes many special cases, such as the "Oldroyd-B model" or "convected 
Jeffreys model" (dashed underlined terms) [1, p. 352]. 

As an illustration of an integral constitutive equation we cited the factorized 
K-BKZ model [16; 1, p. 436] 

x(t) = M(t-t') TE01 + O W ~01] dt' 
012 ] (3.18) 

in which M(t-t') is the linear viscoelastic memory function (M1 in eq. 3.16), and 
W(II,I2) the so-called "potential function," which depends on the strain invariants 
I1 = tr B and 12 = tr B-l, and which must satisfy the condition 

(OW/011)3,  3 + (0W/012)3 ,  3 = 1. 
Deducing empirical constitutive equations from rheometric data is a difficult and 

frustrating exercise in "tensorial curve fitting." In recent years the emphasis has shifted 
to the use of kinetic theories to provide guidelines as to the form of constitutive 
equations. 

4. Kinetic theory ideas and dumbbell models 

To introduce the main ideas used in kinetic theories, we use some highly 
oversimplified mechanical models. In particular, we discuss the elastic dumbbell model 
(two "beads" joined by a "spring") and the rigid dumbbell (two "beads" joined by a rigid 
"rod"); for a discussion of molecular models and their origins, see [1, Chapter 11]. 

4.1 Dilute solutions of elastic dumbbell [2, Chapter 13] 

We can write an equation of motion for each bead of the dumbbell indicating that 
the mass of the bead times its acceleration is equal to the sum of all forces acting on the 
bead. When we neglect the inertial terms containing the bead masses, we get a "force 
balance" among the various forces: 

in which 

F (h) + F(v b) + F(v d~) = 0 (v = 1.2) 

F(h) = -[~0"([/ 'v] - (Vv + Vv))] 

(4.1) 

(4.2) 
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1 0 _ _ v ) ] W ) l  
= - v ) ( / - v  (4.3) 

d 

(4.4) Orv 

In these equations rv is the location of the vth bead, m is the mass of a bead, ~ is the 
potential energy associated with the spring, and U/(rl,r2,t) is the configurational 
distribution function for the dumbbell. The double brackets [ ] indicate an average in 

the velocity space. We now discuss each of the contributions to the force balance. 
Equation 4.2 describes the hydrodynamic force acting on bead v. According to 

this expression the force is proportional to the difference between the bead velocity/'v 
(appropriately averaged with respect to the velocity distribution) and the velocity 
(Vv + V'v) of the solution at bead v. The velocity v v = v0 + [l¢.rv] is the imposed 
homogeneous flow field at bead v (here 1¢(t) and v0(t) are position independent), and 
V'v is the perturbation of the flow field at bead v resulting from the motion of the other 

bead ("hydrodynamic interaction"). According to eq. 4.2, the hydrodynamic drag force 
is not necessarily collinear with the velocity difference since the coefficient of 
proportionality is a tensor ~0, (the "friction tensor"). The beads actually execute very 
tortuous paths as they move about in the solvent, but by using the velocity-space average 
of i'v we obtain a kind of "smoothed out" drag force. 

Equation 4.3 is a smoothed-out Brownian motion force. The true Brownian 
motion force would be a rapidly and irregularly fluctuating function. Instead of the 
latter we use a statistically averaged force, the origin of which can be understood from a 
complete phase-space kinetic theory [1, Chapter 18]. It should be noted that the 
expression for the Brownian force has the form of the divergence of a momentum flux. 
In almost all kinetic theories published so far, equilibration in momentum space 
(Maxwellian velocity distribution) has been tacitly assumed; then the Brownian force 

becomes F ( b )  = - kT(~ In ~/0rv). 

Equation 4.4 gives the force F(v ¢) on the vth bead resulting from the 
intramolecular potential energy, that is, just the force acting through the spring in the 
dumbbell. Since the forces on the two beads are equal and opposite, it is useful to define 

a "connector force" F(c) by F(c) = F~ ¢) = -F(2 ¢). 
We now assume that the friction tensor is a multiple of the unit tensor (~0 = ~8), 

that the Maxwellian velocity distribution is used in the Brownian motion term, and that 
hydrodynamic interaction is neglected; then the equations of motion become: 

-~([f'v]- v0-[~c, rv])- k T ~ r v  In u /+  FCv = 0 (v = 1,2) (4.5) 

When these two equations are added together and then divided by 2, we get the equation 
of motion for the center of mass re = (1/2)(rl + r2); when they are subtracted, we get 
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that for the connector vector Q = r2 - r l :  

t im = vo + [lc.rc] 
(4.6) 

[Q] = [~C.Q] 2kT ~ In V -  ~ F(c) (4.7) 
OQ 

Here we have introduced v(Q,t) which is related to W(rl,r2,t) by u /=  rot/, where n is 
the number density of dumbbells. The first of the equations above shows that the center 
of mass of the dumbbell moves on the average with the solution velocity at the location 
of the center of mass. The second equation is used presently to obtain the diffusion 
equation for v(Q,t). 

The distribution function W(rl,r2,t) must satisfy a continuity equation: 

o*:ot ,48, 

which accounts for conservation of system points in the six-dimensional configuration 
space. By a change of variables this can be rewritten for v(Q,t) as: 

0t - ~ 
(4.9) 

This is the continuity equation in the three-dimensional intemal configuration space. 

Substitution of [Q] from eq. 4.7 into eq. 4.9 gives the "diffusion equation": 

0_~= ( O 2kT ~ ~F(C)V} ) 
0t - ~--~. {[lc.Q] V-  ~ ~-~-gt- (4.10) 

This describes the way the distribution of configurations changes with time when the 
time-dependent homogeneous velocity field is described by lc(t) and the dumbbell spring 
force is given as F(c). This is the basic differential equation in the elementary elastic- 
dumbbell kinetic theory. 

Next we tum to the expression for the stress tensor, which contains three 
contributions: the solvent contribution; a contribution from the tensions in the springs, 
F(c); and a contribution from the bead momentum flux: 

2 

rc = ~:s- n <QF(C)> + nm ~ <(rv - v)(/'v - v)> (4.11) 
v=l  

Here < > stands for an average in the phase space of the dumbbell. The term containing 
F(c) is usually the most important of the three terms. Equation 4.11 is valid whether or 
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not hydrodynamic interaction is included and whether or not the friction tensor ~ is 
isotropic; also no assumption has been introduced regarding the velocity distribution. 

For a velocity distribution Maxwellian about v the last term in eq. 4.11 becomes 
isotropic, and the expression for the extra stress tensor x then becomes 

Kramers form x = -rlsYO) - n <QF(C)> + nkT 8 (4.12) 

Giesekus form "c = "~s~(1) + ~ ~ <QQ>(o  (4.13) 

The Giesekus form [17] is obtained from the Kramers form [18] by using the second 
moment of eq. 4.10 (see 1, p. 70). 

For Hookean dumbbells (F(c) = HQ, where H is the spring constant), <QQ> can 
be eliminated between eqs. 4.12 and 4.13 to get the "convected Jeffreys model" (dashed- 
line terms in eq. 3.17) with: 

Zero-shear-rate viscosity: 
Relaxation time: 
Retardation time: 

0 = rl s + nkT ~LH 

~1 = ~H = (~.J4H) 
~.2 = [TIs/(Tls + nkT ~,H)]~,H 

(4.14) 

This shows how the constants in an empirical constitutive equation can be given a 
molecular-model interpretation. However, the convected Jeffreys model gives a 
constant rl, a constant q~l, and hu2 = 0 -- all unacceptable results. 

For finitely extensible nonlinear elastic (FENE) dumbbells (F(c) = HQ/  
[1-(Q/Qo)2], where Qo is the maximum extension) a similar procedure can be used if 
[1-(Q/Qo) 2] is replaced by [1-<(Q/Qo)2>], the so-called "Peterlin approximation." This 
leads to the Tanner constitutive equation [19] which is nonlinear in Xp = x - Xs = x + 

~sY(O: 

Z'cp + ~.HXp(1) - XH(Xp - nkT 5) D In Z/Dt 

= -nkT ~,HY(1) (4.15) 

in which ZH = ~/4H, Z = 1 + (3/b)[1 - (tr Xp/3nkT)], and b = HQ02/kT. The use of the 

Peterlin approximation for this model has been carefully studied and is known to give 
reasonable results. Limited testing of this "FENE-P" constitutive equation showed 
moderately good ability to describe rheometric data on ~1 and W1 and nontrivial flow 

phenomena [20]; this is an example of how a molecular theory can suggest the form of 
the constitutive equation, with the constants being determined from experimental data. 

Recently the elastic dumbbell model has been modified to allow for diffusion of 
dumbbells across streamlines [21]; this leads to a term containing V2"Cp in the constitutive 
equation. 
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4.2 Concentrated solutions of elastic dumbbells [2, p. 97] 

In concentrated polymer solutions or in melts, the polymers are restricted in their 
motion because of the crowding of the molecules. Under such conditions, we need to 
retain the (anisotropic) friction tensor t0 in eq. (4.2) and we also need an anisotropic 

Brownian motion Fv O) = -(kT/tP)[(3/3rv)-~81~], in which the anisotropic tensor ~0 

accounts for skewing the Maxwellian velocity distribution. Several proposals have been 

made for empiricisms for t0 and ~0, among them one by Giesekus [22]: ~b 1 = (l/t)[8 - 

(a]nkT)xp] and ~b 1 = 8 - (a]nkT)'~p, where a is an empirical constant. These lead to the 

constitutive equation: 

xp + ~.H'CpO ) - (a/nkT) { ~p.Zp } = -nkT ~-HT(1) (4.16) 

where ~,H = (l+2a)Xn = [(1+2a)/(l+a)](~4H). This model seems capable of qualitative 

description of polymer melt rheometric data. By superposing equations of the form of 
eq. (4.16), with a spectrum of time constants, quantitative descriptions may be possible 

[1, p. 4121. 

4.3 Dilute solutions of rigid dumbbells [2, Chapter 14] 

For the rigid dumbbell of rod-length L, there are only two spatial coordinates 0 
and dp (or we can use the unit vector u along the rod). In lieu of derivatives with 
respect to 0 and ¢ we can use the operator 0/3u = s 3/30 + (1/sin 0) t 3/0~, where s and 
t are unit vectors in the 0 and ~ directions. The diffusion equation for the orientational 

distribution function f(u,t) is: 

- L 0 Of 0 . Dc.u-n:uuu]f/ 
0f0t 6~,(~u'~uu)-(~uu -/ (4.17) 

where ~, = tL2/12kT. The stress-tensor is given by: 

Kramers form: x = -Tls70) - 3nkT<uu> - 6nkT X~z:<uuuu> (4.18) 

Giesekus form: ~ = -rlsT(1) + 3nkT ~ <uu>(D (4.19) 

Because of the constraint of constant interbead distance, the forms of these equations are 
different from those for elastic dumbbells. Thus far, it has not been possible to get an 
exact constitutive equation for this model; the best we can do is to give the first few 
terms of the retarded-motion expansion and the memory-integral expansion (see 
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[1, p. 131]). Numerical solutions of eq. 4.17 have been obtained [1, p. 123] from which 
we know that: 

1] - rls - 0.678 nkT)~(~,'~) 1/3 (4.20) 

kI'/1 "2" 1.20 nkT~.2(~.~t)-4/3; ~'I't2 = 0 (4.21) 

Recently the coefficient in eq. (4.21) was found exactly [23] to be q-ff/[22/3F(7/6)]. 
These results have also been extended to multibead rods with hydrodynamic interaction 
[2, p. 136]. 

5. Kinetic theory ideas and chain models 

For flexible polymers the elastic dumbbell models are unsatisfactory because they 
do not contain a spectrum of relaxation times, the latter being needed in order to 
describe the coupled internal motions. Here we give a brief introduction to chain 
models. 

5.1 Dilute solutions of bead-spring chains [2, Chapter 15] 

The simplest model for flexible chains is the freely jointed Rouse model, a chain 
of N identical beads joined linearly by N-1 Hookean springs with spring constant H. 
The diffusion equation (the chain analog of eq. 4.10) and the stress tensor expressions 
(the chain analogs of eqs. 4.12 and 4.13) are easily derived and well-known. The 
configurational distribution function can be worked out for all flows [24; 2, p. 161], and 
the constitutive equation is now well known [2, p. 159]: 

N-1 

x = -TlsT(~) + xj 

j=l (5.1) 

xj + ~jxjO ) = - n k T  ~,j'~(1) (5.2) 

where the time constants )~j are Xj = (~2H)/[4 sin2(jn/2N)]. This result is unsatisfactory 
since it does not describe the shear-rate dependence of rl and W1. Inclusion of 
hydrodynamic interaction, averaged with the equilibrium configurational distribution 
function (the Zimm theory) is equally unsatisfactory, although useful for fitting linear 
viscoelastic data. 

Considerable improvement is the FENE-P chain in which the spring forces are 

taken to be F~ c) = HQj/(1-<Q~/Q~>) -- that is the expression in the denominator is 
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"consistently averaged," that is, averaged with the configurational distribution function 
at the instantaneous kinematic condition. Detailed calculations of material functions 
have been carded out for this model [25,26], and it has also been used to study "coil- 
stretch transitions" in unsteady elongational flows [27]. 

A much simpler constitutive equation, giving nearly the same results for material 
functions as for the FENE-P chain, is obtained for the "FENE-PM chain" [28], 
in which 

F~C) = HQ) 
I-[Ej<Q2/Q~/(N-I)] (5.3) 

For this choice of F~C)-the polymer contribution to the stress tensor is given by: 

'l;p ---- '~ + lqs~t(1 ) = ]~jl;j (5.4) 

Zxj + LjxjO ) - ~,j('q - nkT 8) D in Z/Dt = -nkT ~'JYO) (5.5) 

Z = 1 + 3b[1 - (tr Xp)/3(N-1)nkT] (5.6) 

where the ~.j are the Rouse relaxation times given just after eq. (5.2). Note that eqs. 
(5.5), with j -- 1,2, ... N-I, are coupled because Z depends on all of the "q. Although the 
constitutive equation in eqs. (5.4)-(5.6) for the FENE-PM chain gives about the same 
results for 1] and ~el as obtained for the FENE-P model, it does not perform as well for 

getting information about the details of the "chain dynamics," such as the stretching of 
individual links. 

5.2 Dilute solutions of bead-rod chains [2, p. 217; 29] 

The Kramers freely jointed bead-rod chain with N beads and N-1 rods of length a 
has a constant contour length of (N-1)a. Because of the internal constraints it is difficult 
to solve the diffusion equation. Although the second-order-fluid constants have been 
known for some time [2, p. 218], it was not possible to calculate the viscometric 
functions rl and U~l until Liu's use of Brownian dynamics. Using the Langevin form of 
the kinetic theory, with a random-number generator to simulate the Brownian motion, 
he calculated the motions of Kramers chains using the classical equations of motion; the 
enormous amount of information generated could conveniently be represented by 
computer animations. Then, assuming that time averages can be equated to ensemble 
averages, he calculated the ~(~,) and LFI(~0 curves [29]. 



17 

5.3 Concentrated solutions of bead-rod chains [2; Chapter 19; 30, 31, 32] 

In melts and concentrated solutions the chain is not free to sample all possible 
configurations, because of the presence of other chains in the immediate neighborhood. 
To account for this one can introduce an anisotropic Stokes law to account for the fact 
that the frictional drag on a segment of the chain will be greater in the direction 
perpendicular to the chain backbone than in the direction parallel to it. One also 
introduces an anisotropic Brownian motion to emphasize the importance of the 
Brownian motion in the direction of the chain. This leads to the following constitutive 
relation: 

t 

x = NnkT[1/35 - f_  IX(t-t')A(t,t')dt' - 

f ~)~:: ~ v(t-t')B(t,t')dt'] (5.7) 

in which ~t and v are something like "memory functions" 

~t(s) = -(;V2)dv/ds (5.8) 

v(s) = _1_6_ Ea,oOd 1 e-~a2~ 
~2Z, ct2 

and A and B are some kind of modified strain tensors: 

A = (1/4re) f [1 + (~{°l:uu)]'S/2uu du 

B = (1/4x) f [1 + (~°]:uu)]'3/2uuuu du 

There are several parameters in the constitutive equation with simple 
physical significance: 

N = number of beads in the chain (proportional to the molecular weight) 
a = the rod length (so that (N-1)a is the contour length) 
~, -- N3+13~a2/2kT = the longest relaxation time 

I~ = the "chain constraint exponent" (about 0.3 to 0.5) 
e = the "link tension coefficient" (about 0.3 to 0.5) 

(5.9) 
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The parameters e and 13 arise in the expression for the modified Stokes law (e = 1 
corresponds to an isotropic Stokes law; e = 0 and 13 = 0 corresponds to the Doi-Edwards 
model) [33]. Equation 5.7 has been extensively compared with the Doi-Edwards model 
and with experimental data, both for monodisperse [31 ] and polydisperse [32] liquids. 

The Doi-Edwards theory is based on the "tube" concept and also uses the stress 
tensor expression taken over from the theory of rubber elasticity; in addition "sliplinks" 
and Maxwell demons are introduced. The polymer motion is regarded as a one- 
dimensional stochastic problem. The Curtiss-Bird theory starts from a general phase- 
space kinetic theory [2, Chapter 17] and makes certain well-defined assumptions, which 
are necessary as successive integrations are performed (in a systematic way) to get from 
the system phase space down to the single-link configuration space. The principal 
assumptions involve making mathematical statements about the anisotropic friction 
tensor and the anisotropic Brownian motion. The bases for the two theories are thus 
quite different from one another, and it is very difficult to make a one-to-one 
correspondence between the elements in the two developments. 

We must not forget that for concentrated liquid systems there is another totally 
different approach, namely the use of network theories. These theories start from the 
theory of rubber elasticity and then introduce assumptions regarding the destruction and 
reformation of network junctions during the flow [2, Chapter 20]. Generally the 
network theories are easier to derive and use than are the "single-chain-in-a-mean-field" 
theories of Doi-Edwards and Curtiss-Bird. 
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Nomenclature 

Roman Symbgl8 

a 

a 

bl,b2,bl 1, etc 
b = HQ02/kT 
F (h) 

F(e) 
f 
g 

= parameter in Giesekus model 
= rod length in flexible bead-rod-chain model 
= constants in the "retarded-motion expansion" 
= constant appearing in nonlinear spring models 

= hydrodynamic drag force on bead v 

= Brownian (thermal) force on bead v 

= spring force on bead v 
= connector force 
= orientational distribution function for rigid-dumbbell model 
= gravitational acceleration 
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g i ,g  i 

gij,g ij 

H 
I I , I2  
k 
M 
M1,M2,.." 
m 
N 
n 
Q = r 2 - r l  

Qo 
Qj 
r 
rv , rv  
re 
T 
t 
t' 
U 
V 
Vv 

Yv' 

v0 

W 
x,y,z 
Z 

Greek Svmbols 

A,B 
B,B-1 

¢ 
q((1) = ~(1) 
"¢(n),~(n) 
~n],~ n] 
~o1,'~°1 
aji 
5 

= convected base vector and reciprocal base vector 

-- covariant and contravariant metric matrix components 
= spring constant in bead-spring model 
-- invariants of  the Finger strain tensor 
= Boltzmann constant 
= memory  function in K-BKZ model 
= kernel functions in memory-integral  expansion 
= mass of  bead 
-- number  of  beads in a bead-spring-chain and bead-rod-chain models 
= number  density of  polymers 
= connector vector in a dumbbell model 
= max imum stretching of a spring 
= connector vector for jth spring in bead-spring-chain model 
= position vector 

= position and velocity of bead v 
= position of center of  mass of a bead-spring model 
= absolute temperature 
= time (i.e., "current" time, or "present" time) 

= past time (t' < t) 
= unit vector along rod in rigid-dumbbell model 
= (mass-average) fluid velocity 
= fluid velocity at bead v 
= perturbation of fluid velocity at bead v because of  hydrodynamic 

interaction 
= fluid velocity at center of  mass of  bead-spring model  [may be a 

function of t] 
= potential function in the K-BKZ model 
= cartesian coordinate 
-- quantity appearing in nonlinear spring models 

= tensors in Curtiss-Bird model 
= Finger and Cauchy strain tensors 
= chain-constraint exponent in Curtiss-Bird model 

= shear rate 

= complex amplitude of shear-rate 
= Vv + (Vv) t  = rate-of-strain tensor 
-- nth rate-of-strain tensors [n = 1,2,3, .--] (functions of  t) 
= nth rate-of-strain tensors [n = 1,2,3, ...] (functions of  t and t') 
= relative finite-strain tensors (functions of  t and t') 

= jth component  of  base vector gi 
= unit tensor (with components ~ij) 
= unit vector in ith cartesian coordinate direction (with components 5ij) 
= Kronecker delta 
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Eij 

'l~s 
110 
11" 
,q 

~1 + 
r = (Vv) t  

~.H = ~ 4 H  

ix 

X 
Xs 
P 

~ ~ . ' °  

'~ij,'~ II 
~s,'Cp 
'~i 

~F 

~1,~F2 

~tJl0,~F20 

Miscellaneous 

= jth component of  reciprocal base vector ~i 
= link-tension coefficient in Curtiss-Bird model  
= elongation rate 
= friction coefficient for a bead 
= friction tensor for a bead 
= non-Newtonian (i.e., shear-rate dependent) viscosity [defined only for 

steady-state shear flow!] 
= solvent viscosity [here taken to be Newtonian] 
= zero-shear-rate non-Newtonian viscosity 
= rl'-irl" complex viscosity [a complex, frequency-dependent quantity] 
= elongational viscosity 
= shear-stress growth function 
= transpose of velocity-gradient tensor [may be a function of t] 
-- time constants in bead-spring-chain models (i = 1,2, ... N- I )  
= time constants in Oldroyd model  (i = 1,2, ... 7) 
= time constant 

= time constants in Giesekus model 
= viscosity of  a Newtonian fluid 
= memory  functions in Curtiss-Bird model  
= anisotropic tensor in Brownian motion force 
= (total) stress tensor 
= solvent contribution to 
= fluid density (mass per unit volume) 
= extra stress tensor 

= covariant and contravariant convected components of  x 
-- solvent and polymer  contributions to 
= contribution of ith mode to x in bead-spring-chain model 
= potential energy of a bead-spring system 
= configurational distribution function in terms of  coordinates rv 

= first and second normal-stress coefficients [defined only for steady- 
state shear flow!] 

= zero-shear-rate first and second normal-stress coefficients 

= normal-stress growth functions 
= configurational distribution function in terms of connector vectors 

O.k 

D/Dt 
~ f  

[] 
< >  

()(1) 

~rv 

= ~/3t + v.V = substantial (material) derivative 
= transpose of  the tensor 

= average in the momentum space 
= average in the phase space 
= first convected derivative of  ( ) 

- + = a V - o p e r a t o r  in the  r v - s p a c e  



PROBLEMS ASSOCIATED WITH THE ELASTICITY OF LIQUIDS 

D. D. Joseph 
Department of Aerospace Engineering and Mechanics 

University of Minnesota, Minneapolis, MN 55455 

These lectures are in three parts: 

1. Physical phenomena associated with hyperbolicity and change of type; 

2. Conceptual ideas associated with effective viscosities and rigidities and the origins of 
viscosity in elasticity; 

3. Mathematical problems associated with hyperbolicity and change of type. 

The ideas which I will express in these lecture are very condensed forms of ideas which have 
been put forward in various papers and most completely in my recent book Fluid Dynamics of 
Viscoelastic Liquids, published in 1990 by Springer-Verlag. The mathematical theory of 
hyperbolicity and change of type is associated with models with an instantaneous eIastic 
response. Basically, this means that there is no Newtonian like part of the constitutive equation. 
The theory for these models as it is presently known is in my book. I am persuaded that further 
development of  this subject lies in the realm of physics rather than mathematics. The main 
issues are centered around the idea of the effective viscosity and rigidity and the measurements 
of  slow speeds, topics which are discussed in this paper in a rather more discursive than 
mathematical manner. 

1. PHYSICAL PHENOMENA ASSOCIATED WITH HYPERBOLICITY AND CHANGE OF TYPE 

It is well known that small amounts of polymer in a Newtonian liquid can have big effects on 
the dynamics of  fl0w. Drag reductions of the order of  80% can be achieved by adding 
polymers in concentrations of fifty parts per million to water. This minute addition does not 
change the viscosity of the liquid but evidently has a strong effect on other properties of the 
liquid which have as yet been inadequately identified. 

We are going to consider some effects of adding minute quantities of polyethylene oxide to 
water on the flow over wires. The first experiments were on uniform flow with velocity U 
across small wires, flow over a cylinder. James and Acosta [1970] measured the heat 
transferred from three wires of diameter D=0.001, 0.002 and 0.006 inches. They used three 
different molecular weights of polymers in water (WSR 301, 205 and coagulant) in 

concentrations d~ ranging from 7 parts to 400 parts per million by weight, the range of extreme 

dilution, in the drag reduction range. They found a critical velocity Uc in all cases except the 

case of most extreme dilution ~=6.62 ppm, as is shown in Figure 1. A brief summary of the 

results apparent in this figure follows. 
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Heat transfer from heated wires of  WSR 301 (after James and Acosta [1987]). The 
experimental points are dots and the lines are from computations of  Hu and Joseph 
[1990]. (a) d=0.001 in. (b) d=0.002 in. (c) d=0.006 in. 
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1. There is a critical value Uc for all but the most dilute solutions: When U<Uc, the Nusselt 
number Nu(U) increases with U as in a Newtonian fluid. For U>Uc, the Nusselt number 
becomes independent of U as in Figure 1. 

2. Uc is independent of the diameter of the wire. This is remarkable. It suggests that Uc is a 
material parameter depending on the fluid alone. 

3. Uc is a decreasing function of q, the concentration. It is useful to note once again that in the 

range of ~ between 6 ppm to 400 ppm, the viscosity is essentially constant and equal to the 

viscosity of  water. 

Ambari, Deslouis, and Tribollet [1984] obtained results for the mass transfer from 50 micron 
wires in a uniform flow of aqueous polyox (coagulant) solution in concentrations of  50, 100, 
and 200 parts per million. Their results are essentially identical to those obtained by James and 

Acosta [1970]; there is a critical Uc, a decreasing function of d?, signalling a qualitative change 

for the dependence of the mass transport of U, from a Newtonian dependence when U<Uc, to a 
U independent value for U>Uc. Their values of Uc for the break in the mass transport curve are 
just about the same as the value of Uc found by James and Acosta for heat transfer. 

Ultman and~Denn [1970] suggested that Uc=c= ~ - ~ 9  where r I is the viscosity, X the 

relaxation time, and 9 is the density of a fluid whose extra stress "r=T+pl satisfies Maxwell's 

equation 

XU3"~/3x + "¢ = ~t[Vu = Vu T] (1) 

where u is the velocity. They used the molecular theory of Bueche to find the value of the 

relaxation time XB for the 52.4 ppm solution and they found that a 0.7~.B would give "ff~/0.TXB 

=Uc ~ 2.9 cm/sec., that is, their estimate of )~B from Bueche's theory is almost good enough to 

give c=Uc. Their calculation of the time of relaxation cannot be relevant, however, because in 
the Bueche theory 

XB = 12MTIs(103+12(~) 
106~2Rg T (2) 

does not go to zero with the concentration ~). The quantities in (2) are (M, Tls, Rg, 

T)=(molecular weight, the viscosity of water, the gas constant, absolute temperature). The zero 

(~ value of  XB can be interpreted as a relaxation time for a single polymer in a sea of solvent. 

The relaxation time of one polymer cannot be the relaxation time of  the solution in the limit in 
which the polymer concentration tends to zero, because in this limit the solution is all solvent. 

Joseph, Riccius and Amey [1986] measured c=2.48 cm/sec in a 50 ppm, WSR 301 aqueous 
solution. This measurement supports the idea that Ue=c. We are trying now to measure wave 
speeds in extremely dilute solutions in the drag reduction range. We find considerable scatter in 
our data in these low viscosity solutions and are at present uncertain about the true value of the 
effective wave speed, including the values which we reported earlier. 
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The hypothesis that Ue=c is consistent with the following argument about the dependence of 
the wave speed on concentration. In the regime of extreme dilution, the viscosity does not 
change with concentration. However. there appears to be a marked effect on the average time of 

relaxation which increases with concentration. It follows then that the wave speed c=~/rl/p~, 

must decrease with concentration 4. 

The shear viscosity for dilute polymers can be calculated using 

"n = rls(1 + [rl]~)) (3)  

where [rl]--(rl-rls)/4 is the intrinsic viscosity. It has a definite value as ~---)0. James and Acosta 

[1970] and James and Gupta [1971] developed expressions of the form ~=A4 from molecular 
theory. A is a function of the polymer properties and it can even be a slowly varying function 
of 4- They find that 

2 11s[T112M 
A - 5 RgT (4) 

This expression shows that ~. is proportional both to the largest relaxation time of polymer 

molecules ~.m--Tls[~l]n/=2RgT and to the concentration 4- James and Gupta [1971] generalized 
the derivation and showed significant influence of molecular weight distribution on the 
magnitude of the relaxation. They found that ~.=A 4, with A given by (4) could possibly 
underestimate the value of the relaxation time computed as a mean value from a two relaxation 
time model by a factor of order 10, depending on the molecular weight distribution of the 
polymers. 

If at small concenlrations 4, ~-=A4 with A independent of 4, then the wave speeds c = Q - ~  

of dilute polymer solutions of two concentrations 41 and 42 are given by 

C 2 = C l ,  ~ / ~ , ~  

for extremely dilute solutions [TI]4<<l and we find that 

c = ~/-~pA4 = C41/2 (5) 

where ),=A 4 and rls, A. p and C are independent of 4. 

In Figure 2 we have plotted the critical velocity versus concentration for three polyox 
solutions and the three diameters of wires used in the experiments. We see that the line 
Uc=C41/2 fit the data of James and Acosta quite well. This lends support to the notion that the 
critical speed is equal to the shear wave speed Uc=c in some approximate sense. We note that 
the attempt of Ultmann and Denn [1971] to fit the concentration data (their Figure 3) failed 
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because they used the Bueche relaxation time (2) rather than the linear relation 7~=A(~, with A 
determined from a measurement using the wave speed meter. 

We shall return to compare these observations with direct numerical simulations in part 3 of 
this paper. 
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. . . . . . .  i! 

+ WSR 205 
+ O "-4. 

/ --.. 
Coagulant - ~  

WSR 301 

10 0 10 1 10 2 103 10 4 
¢ (ppmw) 

Figure 2 Critical velocity at which the Nusselt number starts to deviate from the Newtonian 
data versus concentration for three Polyox solutions (WSR-205, WSR-301, 
coagulant) and three cylindrical wires (d=0.001, 0.002, 0.006in.). Data of James 
and Acosta [6]. Solid lines are correlations Uc = C (~-1/2. 

Konuita, Adler and Piau [1980] studied the flow around a 0.206 mm wire in an aqueous 
polyox solution (500 ppm, WSR-301) using laser-Doppler techniques. They found a kind of 
shock wave in front of the cylinder, like a bow shock. They say that the velocity of the fluid is 
zero in a region fluid in front of the stagnation point. Basically they say that there is no flow, or 
very slow flow near the cylinder. The formation of the shock occurs at a certain finite speed, 
perhaps Uo This type of shock is consistent with the other observations in the sense that with a 
stagnant region around the cylinder, the transport of heat and mass could take place only by 
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diffusion, without convection. This explains why there is no dependence of the heat and mass 
transfer on the velocity when it exceeds a critical value. 

I estimated the critical speed, using the data of Konuita, Adler and Piau, and I estimated the 
wave speed c by extrapolating from our measurements in the polyox solutions at different 
concentrations. These estimates are reported in my book "Fluid Dynamics of Viscoelastic 
Liquids." They are consistent with the notion of a supercritical shock transition at Uc=C. 

Another striking phenomenon which appears to be associated with a supercritical transition is 
delayed die swell. It is well known that polymeric liquid will swell when extruded from small 
diameter pipes. The swelling can be very large, four, even five times the diameter of the jet. 
This swelling is still not .well understood even when there is no delay. Joseph, Matta and Chen 
[1987] have carried out experiments on 19 different polymer solutions. They found that there is 
a critical value of the extrusion velocity Ue such that when U<Uc, the swell occurs at the exit, 
but when U>Uc the swell is delayed, as in Figure 3. If U is taken as the centerline velocity in 
the pipe, then the transition is always supercritical with Ue>c. The length of the delay increases 
with U. The velocity in the jet after the swell of jet has fully swelled is subcritical Uf<U where 
Uf is the final U. This is something like a hydraulic jump with supercritical flow ahead of the 
delay and subcritical flow behind it. 

m 

Figure 3 Delayed die swell. 

Yoo and Joseph [1985] studied Poiseuille flow of an upper convected Maxwell model 
through a plane channel. Ahrens, Yoo and Joseph [1987] studied the same problem in a round 
pipe. In both cases, we get a hyperbolic region of flow in the center of the pipe when the 
centerline velocity Um, equal to 2U in the Maxwell model, is greater than the wave speed c. 
This gives theoretical support to the idea that delayed die swell is a supercritical phenomenon. 

There is a marked difference between the shape of the swell when it is delayed between 
different polymer solutions. The shape seems to correlate with a relaxation time 

x =  /Gc (2) 

where ~ is the zero shear rate viscosity and Gc is the rigidity. We get Gc from measuring c 

c 2 = Grip.  (3) 

When ~, is large, say ~.>0(10 -3 see), the delay is sharp, as in Figure 3. When the relaxation 

times are small, ~<0(10 --4 see), the delay is smoothed; in the extreme cases it is difficult to see 
that the swell is actually delayed. 
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We can say the Newtonian fluids are fluids with very large values of 7~. In the case of 
delayed die swell, the smoothing of the swell is probably associated by the effect of smoothing 
due to an effective viscosity which arises from rapidly relaxing modes which have already 
relaxed when the delayed swell commences. Very viscous liquids always exhibit relaxation or 
non-Newtonian effects because even though the relaxation is fast, there is so much to relax. 

In Figure 4, we plotted the critical Mach number 

Me = 2Uc/c 

against the diameter of the pipe. In all cases Me>l, nearly. The value Mc=l seems to be some 
form of asymptote for large values of the pipe diameter d. We do not understand why different 
fluids have such different Me vs. d curves. We have thought about the consequences of shear 
thinning, which are important for some of the test liquids, in trying to collapse the experimental 
curves for different liquids into one curve, but we have not been successful. 
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Delvaux and Crochet [1989] have done a numerical study of delayed die swell in a plane jet 
using an Oldroyd B model, the upper convected Maxwell model plus a very small perturbing 
Newtonian viscosity Ix such that Ix/(I.t+rl)=0.05. The results of their calculation are very 
interesting. They confirm the conjectures of Joseph, Matta and Chen [1987] which have been 
expounded, and introduce some new understandings. The main new result can be described as 
"the breakout of the region of the hyperbolic vorticity." At small supercritical values of the 
velocity (Math numbers not too greatly in excess of one) the hyperbolic region extends slightly 
downstream into the jet but does not touch the jet boundary, as can be seen in panel (a) and (b) 
of Figure 5. 

i 

I / 
/ / 
1 / 

il 
Figure 5 (after Delvaux and Crochet, 1989). Jet profile and hyperbolic regions of vorticity 

under different conditions in a plane jet of an Oldroyd B fluid with a very small 
Newtonian viscosity. (a) (M, R,W)=(2.3, 13.5, 0.39); (b)(2.9, 17, 0.49); 
(c) (4.1, 29.9, 0.87), (d) (5.1, 34.6, 1) 

As the velocity increases, more and more of the jet is consumed by the hyperbolic region. At 
a certain velocity, between panel (b) and (c) of Figure 5, the hyperbolic region first touches the 
jet boundary, then consumes more and more of the jet boundary. Evidently the change in the 
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curvature of the jet is associated with the breakout of the hyperbolic region. This explains why 
the delay is not observed at small supercritical values of the velocity but only at larger 
postcritical breakout values. It would be good if we could find a way to explain the way the 
delay depends on the jet diameter. 

2. CONCEPTUAL IDEAS 

Nonlinear constitutive modeling is a jungle. The possible responses of the material to 
stresses are too complicated to describe by one explicit expression. General expressions are too 
abstract to be of direct use and are always insufficiently general to describe everything. 
Linearizing around rest is good because many different models collapse to one. The nonlinear 
parameters go away. Moreover, the elasticity of liquids is preeminently associated with 
propagation of small amplitude waves into rest. 

We start with Boltzmann's expression for the extra stress 'r which has been generalized to 
contain a Newtonian term 

OO 

X = 2IxD [u(x, t)] + 2 S G(s)D[u(x, t-s)]ds (6) 
0 

where u is the velocity, D is the symmetric part of grad u and G(s) is positive, bounded and 
monotonically decreasing to zero. The actual stress T=-pl+'c differs from 'r by a "pressure" p. 
Equation (6) is the most general linear functional of grad u in a fluid.  To name a fluid, we need 
a Newtonian viscosity IX and a shear relaxation modulus G(s). We get Jeffreys' model from (6) 

when we write G(s)-~ -~ exp (-s/X) and Jeffreys' model reduces to MaxweU's if also IX----0. 
L 

Now we consider viscosity. In steady flow, u is independent of t and comes out of  the 
integral in (6). We get 

• r = 2~D[u(x)] 

O O  

where ~=ix+rl is the static or zero shear viscosity and rl = SG(s)ds, the area under G(s), is the 
0 

elastic viscosity. We have a viscosity inequality ~->rl with equality when there is no Newtonian 

viscosity tx--0. 

Now we consider elasticity IX--0, writing 

D[u(x, t-s)] = -  ~s E [~(x, t-s)] 

where ~ is a displacement and E is the infinitesimal swain. If it were possible to make a step in 

strain without flow, and it isn't possible, we would have D[u(x, t)] = E0(x)8(t) for Dirac 8. 

Then, from (6), with Ix=0, 
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x = 26(0 Eo(x) 

and you can see why G(t) is called the stress relaxation function and G(0) the rigidity or shear 
modulus. Another way to see elasticity with IX---0 is to write 

• r = 2  I -  ~ss {G(s)E [~ (x, t-s)]}ds + 2 I G'(s)E [~ (x, t-s)] ds .  (7) 
0 0 

Now we can suppose that G(s) decays ever so slowly so that the second integral will tend to 
zero while the In'st gives rise to linear elasticity for an incompressible solid 

= 2G(0) E [(~ (x, t)]. (8) 

Now we restore the Newtonian viscosity and we note that this viscosity smooths 
discontinuities. For example, in the problem of the suddenly accelerated plate, the boundary at 
y=0 below a semi-infinite plate is suddenlyput into motion, sliding parallel to itself with a 
uniform speed. I f  ~t=0, this problem is governed by a telegraph equation. The news of the 
change in the boundary value from zero to constant velocity propagates into the interior by a 

damped wave with a velocity c=~G(0)/p .  The amplitude of the velocity shock decays 
exponentially. A short while after the wave passes, the solution at the given y looks diffusive. 
If g~0, and is small, a sharp front cannot propagate. Instead we get a shock layer whose 

thickness is proportional to ~bty/'g and the solution, as in the Newtonian fluid, is felt instantly 
everywhere. We get a diffusive signal plus a wave. The wave could be dominant in the 
dynamics if g is small. 

Actually diffusion is impossible because it requires that a pulse initiated at any point be felt 
instantly everywhere. This same defect hold for all models with g#0, like Jeffreys'.  
Propagation should proceed as waves. 

Poisson, Maxwell, Poynting and others thought that g=0 ultimately. It's all a matter of time 
scales. Short range forces between molecules of a liquid give rise to weak clusters of molecules 
which resist fast deformations elastically, then relax. Liquids are closer to solids than to gases. 
Liquid molecules do not bounce around with a mean flee path, they move cooperatively. 

So what is the difference between two liquids with the same rl, one appearing viscous 

(Newtonian) and the other elastic? Maxwell thought that viscous liquids were actually elastic, 
with high rigidity and a single fast time of relaxation. To fix his idea in your mind, we compare 
two liquids with the same viscosity rl, satisfying Maxwe11's model with G(s)=G(0) exp(-sFL), 

G(0)--al/Z. To have the same 11 the Newtonian liquid would have a relatively large G(0) and a 

small time ~. of relaxation. The trouble with Maxwell's model, if not his idea, is that a single 
time of  relaxation is against experiments which can never be made to fit a single time of 
relaxation. 

There are many different times of relaxation. Experiments indicate that many liquids respond 
to high frequency ultrasound like a solid organic glass with 
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G(0) N 109pa, c = ~  ~ 105 cm/sec. (9) 

This type of estimation is valid for a huge range of liquids, from olive oil to high molecular 
weight silicon oils. With this time of relaxation and such a high rigidity, all the liquids would 

look Newtonian, with t much greater than ~t/G(0), which is of the order of 10-10 see. in olive 
oil, and is perhaps 10 -45 in some high viscosity silicon oils. In fact, we see much longer lasting 
responses which come about because there are different times of relaxation. Small molecules 
relax rapidly, giving rise to large rigidity G(0) and fast speed. Large molecules and polymers 
relax slowly, giving rise to a smaller effective rigidity G~t(0), effective viscosity IX and slow 
speed 

c=elx='~/-G~(0)/p. (10) 

To get this firmly in mind, we can think of a kernel with values like those given by (9), 
sketched in Figure 6. 

to G(O)=I 0 9 Pa 

~ to 10 5 Pa 

Figure 6 G(s), fast relaxation (say 10-10 sec) followed by a slow relaxation (say 10 -4 sec). 

We may inquire if at t>>10 -I0 sec the relaxed fast modes have a dynamical effect. Yes, they 
give rise to an effective viscosity. We may as well collapse the glassy mode into a one-sided 

delta function IxS(s) where IX-G(0)TL1, or some fraction of this. This is our effective viscosity 
and our construction shows that is not unique. This is a very interesting concept, but it is not 
amenable to experiments that we know. 

It is useful to define a time unit in terms of the slowest relaxation, say #/Gc. This gives rise 
to an internal clock, with a material time defined by the slowest relaxation. This time may be 
slow or fast on the external clock. To get this idea, think of the analog for the transport of heat. 
Heat is transported in solids by fast waves. The fastest wave is associated with electrons with 
relaxation times of 10 --13 sec, then by lattice waves (phonons) with relaxation times of 10-11 
sec. Both times are surpassingly short on our clock. However, at 10 -13 sec, the electrons have 
all relaxed (and they give rise to diffusion) whilst the phonons have not begun to relax. Of 
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course, it's more interesting when the slow relaxation is not too fast on our clock, as is true for 
viscoelastic fluids. 

The notion of an external and internal clock is an appealing idea for expressing the difference 
between different theories of fading memory. Some theories, like Maxwell's and the more 
mathematical one by Coleman and Noll [1960] use an external clock; in rapid deformations the 
fluid responds elastically; in slow deformations the response is viscous. Fast and slow are 
measured in our time, on the external clock. Such theories rule out transient Newtonian 
responses. Models with IX~O, like Jeffreys', or the more mathematical one by Saut and Joseph 
[1983], are disallowed. To get IX#0 back in, even though ultimately Ix--0, we need an effective 
Ix, assoeiated with an internal clock. 

3. MATHEMATICAL THEORY 

When the fluid is elastic the governing equations are partly hyperbolic. The hyperbolic 
theory makes sense when the Newtonian viscosity is zero or small relative to the static viscosity 

~. For very fast deformations in which the fluid responds momentarily like a glass, the 
equations always exhibit properties of hyperbolic response, waves and change of type. 
However, the glassy response takes place in times too short to notice. Hence, the hyperbolic 
theory is not useful where it is exact. The hyperbolic theory is useful when we get an elastic 
response at times we read on our clock, in the domain of the effective theory. Hence, the 
hyperbolic theory is useful where it is not exact. 

Most of the mathematical work has been done with fluids like Maxwell's and for plane 
flows. These problems are governed by six quasilinear equations in six unknowns. The 
unknowns are two velocity components, three components of  the stress, and a pressure. The 
continuity equation, two momentum equations and three equations for the stress govern the 
evolution of the six variables. The stress equations are like Maxwell's 

~'~ . 

X[-~--+u V~ +~f/~--,x--a(D~+~D)] = 2riD + ~ 

where D is the symmetric part and f l  the antisymmetric part of Vu, -l_~a<l and gare lower 

order terms, algebraic in the system variables. This system may be analyzed for type in the 
usual way. We get a 6th order system and it factors into three quadratic roots. Two of the roots 
are imaginary so that the system is not hyperbolic. The streamlines are characteristic, with 
double roots so that the system is not strictly hyperbolic. The third quadratic factor depends on 
the unknown solution, algebraically, and it can be real or complex, depending on the solution. 
We say that such a solution with mixed roots is of composite type. Some variables are elliptic, 
some are hyperbolic. 

It turns out that the pair of roots which depend on the unknown solution and can change type 
are associated with the vorticity equation, a second order nonlinear PDE. This equation is either 
elliptic or it is hyperbolic, depending on the solution. It is not of  composite type, but is 
classical, like the equation for the potential in gas dynamics. 
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We can think of the unsteady vorticity equation and the steady vorticity equation. The 
analysis of the two has greatly different consequences. The unsteady equation is ill-posed when 
it is elliptic and well-posed when it is hyperbolic. Ill-posed problems are catastrophically 
unstable to short waves, with growth rates which go to infinity with the wave number. The 
conditions on the stress which lead to ill-posed problems can be determined by the method of 
frozen coefficients, as was first done by Rutkevich [1969]. It turns out that the Maxwell 
models with a---Z-_l cannot be ill-posed on smooth solutions, but the other models do become ill- 
posed for certain flows. 

The problem of change of type in steady flow is different. The vorticity in steady flow can 
b e o f  mixed type with elliptic and hyperbolic regions, as in transonic flow. The physical 
implications of these mixed "transonic" fields are not yet perfectly understood, though many 
examples have been calculated. 

There are many models, other than those like Maxwell's, in which vorticity is the key 
variable. It is the only variable which is either strictly elliptic or strictly hyperbolic. The stream 
function satisfies Laplace's equation, the velocity and the stresses are of composite type. The 
stresses do not satisfy a hyperbolic equation and it is wrong to speak of the propagation of 
stress waves. 

There are other models in which the vorticity is not the key variable. However, when these 
models are linearized around rest, one finds again that the steady vorticity equation is either 
elliptic or hyperbolic, and the unsteady vorticity equation is always hyperbolic. Hence it is 
precisely waves of vorticity which propagate into rest. 

The mathematical consequences of composite roots are clearly evident in the recent solutions 
of L. E. Fraenkel [1987], H. Hu [1990], which are reviewed in Joseph's [1990] book, of the 
problem of linearized supercritical flow over a flat plate. The linearization here is around the 
uniform flow which exists at infinity, as in Oseen's problem for the Navier-Stokes equation. 
Fraenkel's solution shows that there is a Mach wedge of vorticity ~ centered on the leading edge 
of the plate. The vorticity in front of this wedge is zero and it is not zero behind the wedge [see 
Figure 7]. Surprisingly, the vorticity jumps from zero to infinity at the wedge, but the 
singularity is integrable. We have rotational flow behind the shock and irrotational flow in front 
of the shock. The stream function satisfies V2W=_~ where ~=0 in front of the shock. 

Therefore, we may write W=WI+W2, V2W2=-~, V2WI=0. To satisfy the boundary conditions 

on the plate, we must have a nonzero potential field W1. In fact W1 satisfies a Dirichlet problem 
for the region outside a strip on the positive x axis. 
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~ orticity shock 

flat plate 

Figure 7 Mach wedge for the vorficity, tan e~ = (l-M2) -1/2. 

The potential flow decays to uniform flow as one moves upstream, but the delay is slow. 
There is no upstream influence in the fully hyperbolic flow of a gas over a flat plate. The 
upstream influence of the flat plate in the flow of a Newtonian fluid is almost negligible. The 
persistence of ~gl is a consequence of its ellipticity, ultimately to the fact that the first order 
system is of composite type. This type of solution may be new in mathematical physics. 

The velocity and the stresses decompose into harmonic and vortical parts. Hence these fields 
are all of composite type. Only the vorticity is pure, strictly hyperbolic in the linearized problem 
of flow past bodies. The velocity and stresses are continuous across the shock. The normal 
derivative of the velocity, the normal and shear stress are also continuous, but the tangential 
derivative of the tangential components of velocity and stress are discontinuous. The elliptic 
component of our composite system is associated with a huge upstream influence. 

Similar considerations enter into the dynamics of flow over small cylinders which we 
discussed in §1 of this paper. Delvaux and Crochet [1990] gave a numerical solution of the 
problem of flow over a cylinder using the constitutive equation of an upper convected Maxwell 
model. This solution is reviewed in the book of Joseph [1990]. Their solution is fully 
nonlinear and it supports the notion that the anomalous heat transport and drag observed in the 
experiments are associated with a change of type. A different numerical solution based on the 
algorithm SIMPLER has been given by Hu and Joseph [1990] and it agrees with the numerical 
solution of  Delvaux and Crochet. Aspects of the solution of Hu and Joseph are discussed 
below. 

In the present problem we wish to evaluate the effect of viscoelasticity upon the heat transfer 
and drag. An upper convected Maxwell model is used. We assume that the viscous heating is 
negligible and that temperature differences in the flow are small and such that the fluid 
properties (p, ~ and rl) do not change. Then the temperature field is deeoupled from the velocity 
field, the energy equation is simply 

Cp p ( u .V) T = }c A T (11) 

where T is the temperature, ep the heat capacity and ~c the thermal conductivity. 
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We shall scale length with the diameter of the cylinder d, velocity with the free slream 
velocity U, pressure with pU 2 and stress with flU/d, and use the same symbol for the 
dimensional and dimensionless quantities. In the dimensionless form the equations of the 
momentum, the constitutive equation and the temperature are 

( u -V) u = -Vp  + 1__ Au + 1 V "XE, (12) 
9t 9~ 

W[(u  -V) ('~E + '~1~) -Vu ('CE + "CN) -- (~E + '~N ) VuT ]+ "CE = 0, (13) 

9~ Pr ( u -V) T = A T (14) 

where for the convenience of numerical treatment the extra stress is split into two parts "~ = "~N + 
"~E with '~N = 2rl D being the pseudo-Newtonian part and "CE being the part due to the elasticity. 

The dimensionless temperature is taken as (T-T~)/T.. (T** is the tetnperature of the coming 

fluid). In these equations the non-dimensional parameters 9~ (Reynolds number), W 
(Weissenberg number), Pr (Prandfl number) are defined as 

9~ = rUd/h , 
W = I U / d ,  
Pr = cpr]k . (15) 

It is helpful to introduce another two non-dimensional parameters, the viscoelastic Mach number 
M and the elasticity number E which are defined by 

W hi 
E -~R - rd 2 '  (16) 

where 

(17) 

is the speed of shear waves in a Maxwell fluid. In the study of change of type the Mach number 
M is an essential parameter. The elasticity number E depends only on the fluid properties and 
the flow geometry. In our computation we choose the pair (9~,E) as the independent parameters, 

and simulate the flow in experiments by keeping E fixed and adjusting ~ .  

In the computation we solve for the velocities, the pressure and the stresses in each iteration. 
Since the temperature field does not effect the velocity, the heat equation is solved after the 
iteration converges. Some additional quantities are also calculated. We evaluate file stream 
function ~ and the vorticity o) which are defined by 



39 

ov  
Ur = r30 '  u0 -~-,  (18) 

OUr u0 co = - ~ +  (19) 
r r50 

From the computed values of the pressure and the pseudo-Newtonian stresses on the surface 
of the cylinder it is easy to obtain the drag force acting on the cylinder. The dimensional drag 
force per unit length on the cylinder is found to be 

Fx = pU 2 d I 0 [ p cos0 + 1,~Nr0 sin0]~_.d/2 dO (20) 
91 

which has two contributions, one from the pressure and the other from the pseudo-Newtonian 
shear stress. In writing (20) we noted that the contribution to the drag of the elastic part of the 
extra stress vanishes because "~Er0 --0 on the surface of the cylinder. The drag coefficient is 
given by 

CD = Fx (21) 

 U2d 
In our computation of heat transfer, we prescribe the upstream temperature as Too (in 

dimensionless form T=0), and the temperature on the cylinder surface as T0=2Too ( in 
dimensionless form T=I). The dimensional average heat flux from the cylinder to the 
surrounding fluid is 

g 

Thus the Nusselt number which characterizes the heat transfer from the cylinder to the 
surrounding fluid is defined as 

Nu = Qd Qd (23) 
K(To-T.) - <T." 

We next keep the flow fixed at a certain Reynolds number and vary the elasticity number, 
thus we can look at the effect of the elasticity of the fluid on the flow. Figure 8 presents the 
streamlines in the neighborhood of the cylinder for flows at 9l=10 and E varying from 0 to 1.0. 
(a) and (b) are almost identical. Starting from (c) with M greater than one, we see an 
increasingly larger downstream shift of the streamlines, at the same time there is a relatively 
small upstream shift. The streamline pattern with viscoelastic fluids of large elasticity number 
differs significantly from that with Newtonian fluids. The large distortion of the streamlines 
creates a wide region near the cylinder where the velocity is very low, thus affects the total drag 
on the cylinder and the heat transfer from the cylinder to the surrounding fluid as we will see 
later. 
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(a) (d) 

fo) 

(c) (f) 

Figure 8 Streamlines in the neighborhood of  the cylinder for the flow of the same Reynolds 
number 9l=10 and different elasticity number E. (a) E=0 (M--0). (b) E=0.01 
(M=I.0). (c) E=0.1 (M=3.16). (d) E=0.25 (M=5.0). (e) E=0.5 (M=7.07). (f) 
E=I.0 (M=10). In the figures the values of the incoroing streamlines, starting from 
the bottom, are 0.01, 0.05, .0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2 
and 2.4 respectively. 

Figure 8 shows the isovorticity lines at ~=10 and E varying from 0 to 1.0. (a) is the familiar 
Newtonian case, where the isovorticity lines are swept downstream by the flow and the high 
vorticity region is at the front shoulder of the cylinder surface where the vorticity is being 
created. (b) is basically the same as (a) except at the front of  the cylinder where the isovorticity 
lines are closer together signaling a sharper change of vorticity in this region. In (c), at a Math 
number M=3.16, we see that the isovorticity lines jam together at the front of the cylinder thus 
creating a vorticity shock, like a blunt body shock in gas dynamics. As the elasticity number 
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increases, this shock still exists and moves slightly upstream. In Figure 8(d) to 8(0, the picture 
of the isovorticity lines for viscoelastic fluids with large relaxation time is drastically different 
from that of Newtonian fluids. Besides the high vorticity zone on the front shoulder of the 
cylinder surface which occurs already in the Newtonian case, there exists a second high 
vorticity region which starts to build up and shifts away from the cylinder surface as the 
elasticity number increases. We find that the maximum values of the vorticity in this second 
region are even higher than the maximum values of the vorticity on the cylinder surface, which 
suggests generation of the. vorticity away from the cylinder surface or behind the shock. We still 

do not understand the physical consequences of this build up. The existence of this second high 
vortieity region away from the cylinder surface was also observed in the work of Delvaux and 
Crochet [1990]; they found a local minimum and maximum in the vorticity plot along a path'just 

, I  

above the cylinder (0----~/2). The dashed lines in Figure 9 indicate the angles, ~=tan-1- 1 ~ ,  

ofvorticity shocks predicted in the linear theory in which the governing equations are linearized 
around the uniform income flow. Close to the cylinder, the vorticity shock is strong. The 
nonlinearity makes the shock curve around the cylinder. As E increases, the nonlinear region 
also increases due to the large stagnant region around the cylinder. Since the linear theory is 
valid far away from the cylinder, the vorticity shock, if it exists, should eventually stretch with 
the angle predicted in the linear theory. But because the the shock is weak and the numerical 
space discretization is usually coarse far away from the cylinder, it is very hard to capture this 
part of the shock numerically. 
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Figure 9 Isovorticity lines for the flow of the same Reynolds number 9~=10 and different 
elasticity number E. (a)E---0 (M=0). (b)E---0.01 (M=I.0). (c)E=0.1 (M=3.16). (d) 
E=0.25 (M=5.0). (e) E=0.5 (M=7.07). (f) E=I.0 (M=10). The dashed lines in the 
figures indicate the angle of the vorticity shocks predicted in the linearized theory. 

The velocity component u in the direction of the free stream is presented in Figure 10 for 
9~=10 and E=0, 0.01, 0.1, 0.25, 0.5, 1.0. Figure 10(a) gives the profile of u ahead of the 

cylinder along the ray 0=0. 10(b) gives the profile just above the cylinder along the ray 0---n/2. 
It is clear that for the flows of larger E, there is a region with small velocity close to the 
cylinder. This stagnant region grows with E. The diameter of this region has increased to about 
3 times the cylinder diameter when E=I as seen in Figure 10(b). Figure 10(a) also shows that 
there is a strong upstream influence for the viscoelastic flow with large E. In 10(b) we notice a 
velocity over-shoot in the region above the cylinder. This over-shoot exists for all cases with 
M>I and shifts away from the cylinder as E increases. The slope of the velocity profile in (b) is 
consistent with the vorticity (derivatives of the velocity) distribution above the cylinder, and 
indicates a second high vorticity region away from the cylinder surface. 
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Figure 10 Effects of viscoelasticity on the velocity profile. The results are obtained with 9l=10 
and E = 0, 0.01, 0.1, 0.25, 0.5, 1. u is the velocity component in the direction of 

the free stream. (a) u versus r along the path e=0, ahead of  the cylinder. (b) u 

versus r along the path e=x/2, just above the cylinder. 

Numerical integration is carried out for (20) on the cylinder surface to get the drag force 
acting on the cylinder. The drag coefficient CD is plotted in Figure 11 as a function of 91 for 
four values of  E= 0, 0.01, 0.1 and 1. The results for E=0, 0.01 and 0.1 are obtained using 
mesh No.2. For E--1 the results using the other two meshes are also presented. We see that the 
mesh refinement has little influence on the drag coefficient for the range of parameters in our 
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Figure 11 Drag coefficient C D versus Reynolds number ~ for elasticity number E=0 
(Newtonian), 0.01, 0.1 and 1.0. Results for solid lines are obtained using mesh 
No.2. For E=I, the results obtained by the other two meshes are also plotted. The 
dashed lines indicate the values of Reynolds number at which the viscoelastic Mach 
number M=I. 

The formula for the drag force acting on the cylinder (20) shows that the total drag can be 
separated into two parts, one part due to the pressure distribution around the cylinder and the 
other part due to the shear stress on the cylinder surface. These two contributions of the drag are 
plotted in Figure 12. In the figure, the drag coefficients of  a viscoelastic case E--0.1 is 
compared with those of the Newtonian case E---0. In the Newtonian case, when 9~ is small, the 

drag coefficients due to pressure and due to shear stress are equal, as is well known. The 

pressure drag coefficient increases with 9~ because of the wake generated behind the cylinder. 

This is especially true in the viscoelastic case, where the drag due to pressure can be much 
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larger than the drag due to shear stress, as we see in the figure, since we have larger wakes in 
viscoelastic cases. The nearly stagnant region around the cylinder is also responsible for the 
reduction of  the drag due to the shear stress in viscoelastic flow. 

100 

drag coefficient 
+ due to pressure 

, drag coefficient 
o due to shear stress 

.I . . . . . . . .  t w "~ E--O'F~I 

.1 1 10 I00 
Iq 

Figure 12 Effect of the elasticity of the fluids on the drag due to pressure and the drag due to 
shear stress on the cylinder surface. 

Figure 13 presents graphs of the Nusselt number Nu versus ~ for E=0, 0.01, 0.1 and 1 at 

Pr=-I and Pr=-10. We checked the results for E=I with three meshes. The results are almost 
identical. Again the values o f ~  at which M=I are indicated in the figure with dashed lines. For 

91 less than these critical values, the Nusselt number for viscoelastic flow is the same as that for 

Newtonian flow. For 91 greater than the critical values, the Nusselt number deviates from the 

Newtonian path and tends to an asymptotic value which does not depend on 9~. This deviation 
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is more prominent for large E and Pr. We see that the effect of the viscoelasticity is to decrease 
the Nusselt number, or to reduce the heat transfer from the cylinder to the surrounding fluid. 
This can also be explained by the stagnant region which develops around the cylinder when the 
flow becomes supercritical (M>I). 
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Figure 13 Nusselt number Nu versus Reynolds number 9t for different elasticity numbers E--0 
(Newtonian), 0.01, 0.1, 1.0, and at Prandtl number Pr=l and 10, The dashed lines 
indicate the values of Reynolds number at which the viscoelastic Maeh number 
M=I. 

For the drag coefficient, the experiments of James and Acosta [6] were carried out on a wire 
of diameter 0.005in. in solutions of Polyox WSR-301. The intrinsic viscosity of WSR-301 was 
[1"1]=9.6 g/100ml measured in the experiments. We reproduced the data for concentration 



47 

qb=15.7, 30, 60, 119 and 226 ppmw in Figure 14. The shear wave speed for WSR-301 of 

concentration 50 ppm is about 2.48 cm/s, which is measured using a wave speed meter and 
listed in the tables of Joseph [1990]. Using this wave speed, we can get the shear wave speeds 
for the other concentrations from relation (5). Thus we estimate that elasticity numbers E=0.03 
for the set of data of 15.7 ppm, E=0.07 for30  ppmw, E=0.13 for 60 ppm, E=0.3 for 119 ppm 
and E---0.6 for 226 ppm as indicated in Figure 14. These values are much larger, about 50 times 
larger, than the values estimated in James and Gupta [1971]. As shown in Figure 14, the 
agreement is fair. 

In the Nusselt number Figure 1 we have reproduced the experimental data for distilled water 
and for Polyox WSR-301 of concentrations 26.2, 52.4, 119 and 226 ppmw with three wire 
diameters, d=0.006in., 0.002in. and 0.001in. The elasticity numbers are similarly estimated 
and indicated in the figures. The experimental value of Pr is not known exactly, for distilled 
water at 20"C the Prandtl number is about 7. Thus the numerical results plotted in lines are 
obtained with Pr=7. Qualitatively, the numerical results show the same tendency of  the 
experimental results. The differences, we think, are due to many factors. Our estimation of the 
elasticity number is rough, as we see from (33), a 10% error in the shear wave speed causes 
20% difference in E. The heat transfer experiments were carried out with a temperature 
difference varying from 9-33"C. This temperature difference changes the viscosity and the 
shear wave speed of the solution, thus causes differences in the E. Also our choice of  Maxwell 
model with a single relaxation time to characterize the fluid is certainly not optimal. 
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Figure 14 Comparison of the drag coefficient obtained by present computation (lines) with 
those measured in experiments of James and Acosta [6] (dots). The elasticity 
numbers for the experimental data are estimated using the shear wave speed as 
described. 
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Abstract  

The flow behavior and its relation to shear-induced structural changes in fluids 
of spherical particles are treated theoretically. Results obtained by kinetic theory 
and by nonequilibrium molecular dynamics computer simulations are presented. 
Two qualitatively different flow regimes are identified: at small shear rates, changes 
affect the local structure; at high shear rates also a long range partial positional 
ordering can occur. The relevance of the results found in simple model fluids for 
the structural properties of flowing dispersions of spherical particles is discussed. 

1 I n t r o d u c t i o n  

The microscopic state o f  a fluid as described by one- and two- particle distribution- 
functions is affected by a viscous flow. The flow birefringence looked for and detected 
by Maxwell [1] is an early experimental evidence for a shear-flow-induced orientation of 
nonspherical particles. Also over a century ago, changes in the relative positional order 
of particles were conjectured by Reynolds [2] who demonstrated his point by a model 
experiment. Deviations of the velocity distribution function from a (local) MaxweUian 
due to transport processes were predicted by the kinetic theory of gases founded by 
Maxwell and Boltzmann [3], [4]. 

Of course, additional insight into the interrelation between the rheological behavior of 
fluids and their microscopic properties has been gained during the last century although 
the progress has not been steady. An increased interest in this topic during the last 
decade is reflected by several special issues of journals [5] - [7]. In this field, there is a 
vivid interplay between theory, nonequilibrium molecular dynamics computer simulations, 
experiments and applications [8]. 

In fluids composed of spherical particles, a viscous flow induces an anisotropy of the 
velocity distribution function [9] and of the local structure as characterized by the pair- 
correlation function or of the static structure factor which is measured by scattering 
techniques [10]- [12]. 

In fluids of nonspherical particles, a viscous flow causes a partial orientation which 
leads to the afore mentioned flow birefringence. In dense fluids, the axes of the particles 
are aligned [13], [14]; in molecular gases an aligment of the rotational angular momenta 
[15], [16] occurs. The orientation of segments plays an important role in the viscous 
porperties of polymeric liquids [14], [17]. 

This article is mainly concerned with the kinetic theory and the nonequilibrium molec- 
ular dynamics (NEMD) computer simulation studies on fluids of spherical particles. Some 
general remarks on rheological properties and notations are made first. 
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2 P r e s s u r e  T e n s o r ,  V i s c o s i t y  C o e m c i e n t s  

2.1 Genera l  Re m ar ks  

Point of departure for the theoretical treatment of the flow behavior of a fluid with 
mass density p and the flow velocity v is the local conservation equation for the linear 
momentum. In the absence of external forces, this equation can be written as 

or equivalently, 

~t  (pv) + V .  (pvv) + V - p  = 0 (i) 

d 
p~/v + v .  p = 0 (2) 

where 
d 0 

= a-~ + v" v (3) 

is the substantial derivative and p is the pressure tensor of the fluid. The tensor p can 
be decomposed into its "irreducible" parts associated with tensors of ranks l = 0, 1, 2 
according to 

p=pS-l-pa+ ~, (4) 
6 is the unit tensor, p is one third of the trace of the tensor p. In thermal equilibrium, p 
equals the hydrostatic pressure p,q and the antisymmetric part p~, as well as the symmetric 
traceless part p vanish. For a fluid composed of spherical, structureless particles to be 
considered in the following, p~ is always zero. The symbol ~ indicates the symmetric 
traceless part of a tensor, e.g. 

ab=g~ l ( a b H - b a ) - 3 a . b 6  (5) 

for the dyadic constructed from components of two vectors a and b. In the following, the 
quantity p is referred to as the "friction pressure tensor". 

The gradient of the velocity field v, viz. Vv can be decomposed in analogy to (4). 
The scalar part (l = 0) is the divergence V -v, the vectorial (I -- 1) and tensorial (l = 2) 
parts are characterized by the vorticity 

= 1 V  × v (6) 

and by the deformation rate (shear rate) tensor 

~ = ~ .  (7) 

In the linear flow regime, the constitutive laws linking the components of the pressure 
tensor with the velocity gradient axe Newton's law 

~ ' =  -2~ ~ (8) 
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and 
p - p~q = -~v  v .  v, (9) 

with the shear viscosity r] and the bulk (volume) viscosity ~]v. These coefficients depend 
on the particular state of the system (density, temperature, . . .)  but not on the shear 
rate. Notice that the constitutive laws (8, 9) do not involve the vorticity w. In the 
nonlinear flow regime, eqs. (8, 9) are to be generalized in several respects. Firstly, the 
shear viscosity r/has to be replaced by a 4-th rank viscosity tensor and one may introduce 
two 2nd rank viscosity tensors describing the nonlinear coupling between the scalar p-p ,q  
and the 2nd rank tensor p. The directional properties of the nonlinear viscosity tensors 

depend on directions specified by w and ~'; their components, as well as 7Iv, depend on 
the magnitudes of V . v ,  w and ~. In contradistinction to (8, 9), nonlinear constitutive 
laws depend on the specific flow geometry. In the following, a plane Couette arrangement 
is considered where the tensorial analysis can be somewhat simplified. 

2 . 2  S p e c i a l  G e o m e t r y :  P l a n e  C o u e t t e  F l o w  

For a flow in x-direction between fiat plates parallel to the x-z-plane, one has 

v~---yy, v ~ = 0 ,  v z = 0  (10) 

with the (constant) shear rate 
avx 

"7- Oy" (11) 

In this case, the divergence V • v vanishes, the vorticity and the deformation rate tensor 
are given by 

1 
w = - ~ T e  z, ~=  "y e~e ~, (12) 

where e ~'y'z are the unit vectors parallel to the coordinate axes. In matrix notation, the 

tensor ~ reads (010) 
~= ~ 1 0 0 (13) i 

0 0 0 

Notice that the magnitudes of both the vorticity oa and of the deformation rate tensor 
are determined by the shear rate 7. For a plane Couette symmetry, only 3 of the 5 

independent components of the friction pressure tensor are nonzero; they are denoted by 
P+, P-, P0 and introduced via the ansatz 

P'= 2p+ eXe ~ +p_ (eXe z - e~e ~) + 2p0 eZe z • (14) 

In matrix notation, (14) reads (o o) 
~ = p +  1 0 0 +p_ 0 -1  0 +po~ 0 -1  0 

0 0 0 0 0 O 0 0 2 
(15) 
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Clearly, p+ is the x-y-component of the pressure tensor, p_ and P0 are associated with 
normal pressure differences, viz. 

p+ = p~, (16) 
1 

p_ = ~ ( p ~ - p ~ )  (17) 

1 (p~. 1 
= + ( i s )  p0  - 

The quantities p_, p+ are essentially the real and the imaginary parts of the spherical 
m = 4-2 components of the tensor p, po ist proportional to the rn = 0 component; the 
rn = -I-1 components vanish for this special geometry. Notice that  the p+-term of (15, 16) 

has the same directional property as the ~-tensor of (12, 13). The p_ and p0 terms involve 
tensors which are proportional to 

w× ~ and ~ .  ~, (19) 

respectively. Thus for a vorticity free flow field (e.g. 4 roller geometry), p_ vanishes due 
to symmetry arguments. 

For a plane Couette geometry, the generalization of the constitutive laws (8, 9) to the 
nonlinear flow regime are written as 

p k = - r / ~ 7 ,  k = + ,  - , 0 ,  (20) 

and 
p - p,¢ = -r/023' (21) 

with the viscosity coefficients r/+, rl_, r/0 and r/02. In the linear flow regime, i.e. for 7 ~ 0, 
r/+ reduces to the Newtonian viscosity and the r/_, rl0, r/02 vanish. In the nonlinear regime, 
the non-Newtonian viscosity rl+ as well as the coefficients r/_, rl0 , r/o2 are functions of the 
shear rate 7. The entropy production is proportional to r/+72, thus 7/+ > 0 but r/_, r/0 
and r/o2 may have either sign. The viscometric functions 91,2 defined by 

p ~  - py~ = -9172,  pyy - p~ = -9272 (22) 

are related to the coefficients r/_, r/0 by 

791 = 2r/_, 792 = - (27/o + r/_). (23) 

The coefficient r/o~ describes the change of the hydrostatic pressure in an nonlinear shear 
flow, r/02 < 0 implies an increase of p at constant density or an equivalent increase of 
the volume at constant pressure (shear dilatancy). So far, the generalized transport 
coefficients needed to describe the viscous behavior of a fluid in the nonlinear flow regime 
have been introduced. General symmetry arguments were used, however, no microscopic 
explanation for the nonlinear behavior has been given. As a first step in this direction, 
the pressure tensor is related to microscopic quantities. 
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2 . 3  M i c r o s c o p i c  E x p r e s s i o n s  f o r  t h e  P r e s s u r e  T e n s o r  

The pressure tensor p of a fluid of N particles in a volume V can be decomposed into 
"kinetic" and "potential" parts accoring to 

p = pk~ + ppo~, (24) 

with 
pkin ---- v - i r a  E ciei. 

i 
Here, m is the mass of a particle and 

(25)  

pk,~ = m / ec f (c )  d3c, (28) 

1 2 
pP°' = ~n f r F g ( r )  d3r. (29) 

is the peculiar velocity of particle "i", r i is its velocity with respect to the laboratory 
frame. The potential contribution to p is 

ppOt = y - 1  1 E ~--~i#jr,JFij. (27) 

Here r ij = r i - r j is the difference between the position vectors of particles "i" and "j", 
F 'j = F ( r  ij) with F(r)  = - 0 ¢ / 0 r  is the force between them; ¢(r) is the binary inter- 
action potential. For spherical particles, one has F = - r r - l ¢  ~ where the prime denotes 
differentiation with respect to r = Ilrl[. The N-particle averages (25) and (27) provide 
the prescription for the evaluation of the pressure in a molecular dynamics simulation. 
For many theoretical considerations, it is advantageous to write pkln and ppOt as integrals 
over 1- and 2-particle distribution functions, viz. 

Here, f ( c )  with the normalization f f d3c = n is the velocity distribution function, n is 
the number density of the fluid. The quantity g(r) with g ~ 1 for r --* co is the pair- 
correlation function, r is the position of any (other) particle of the fluid with respect to 
an arbitrary reference particle. 

In terms of N-particle averages, the distribution functions are given by 

with n = N / V .  

f(¢)  = v - 1 E  6 (30) 
i 

ng(r) = N - 1 E  E i ¢ j 5  (r - r ' j) (31) 

Both pk~n and pr~t as given either by (25, 27) or by (28, 29) can be decomposed anal- 
ogously to (4). Similary, the viscosity coefficients r/k and ~o2 introduced in (20, 21) are 
the sums of kinetic and potential contributions which are expected to be the dominating 
ones in dilute gases and in dense fluids, respectively. In thermal equilibrium, the velocity 

c' = - v ( r ' )  (26)  
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distribution function f ( r )  depends on the velocity c via c = Ilcll only and the pair cor- 
relation function is a function of r = I l r l l  . Due to this isotropy, the symmetric traceless 

part'P of p vanishes. Furthermore, p reduces to the equilibrium pressure p~q. Thus in 
a nonequilibrium state, the molecular distribution functions f(c)  and g(r) deviate from 
their equilibrium values. Before this point is discussed in detail in part 3, some results 
on the (nonlinear) viscosity coefficients as obtained from molecular dynamics simulations 
are presented next. 

2 . 4  E x a m p l e s  f r o m  N E M D  

In a molecular dynamics (MD) computer simulation the equations of motion of N particles 
interacting with a given force law are integrated numerically. Macroscopic quantities such 
as the pressure tensor, as well as one- and two-particle distribution functions are evaluated 
from the known positions and momenta of the particles as N-particle averages, see eqs. 
(25, 27, 30, 31). These quantities then are averaged over many time steps. The dynamical 
system studied with the help of the computer mimics a physical system; the extraction 
of data can be looked upon as a "measurement" on a model system. 

Periodic boundary conditions are used (together with the standad minimum image 
convention) if one is interested in bulk properties rather than boundary layer effects. 
Typical values for N are a few hundered to a few thousand. 

The control of constraints which guarantee thermal equiblibrium or a stationary 
nonequilibrium state (nonequilibrium molecular dynamics: NEMD) as well as the con- 
struction of the "measuring devices" which allow the extraction of the desired data are of 
crucial importance (just as in a real experiment). Of course, relaxation phenonema can 
also be studied by NEMD. 

Methods to simulate a plane Couette (simple shear) flow have been developed and 
tested, for details see refs. [18], [19], [20]. For gases excellent agreement (without any 
adjustable parameter) between results obtained by the kinetic theory based on the Boltz- 
mann equation and NEMD results are found for the viscosity coefficients and the shear- 
flow induced distortion of the velocity distribution function even in the nonlinear flow 
regime [9]. 

As typical examples, data for the viscosity coefficients of a liquid composed of Lennard- 
Jones (L J) particles with the interaction potential 

are presented. Reduced variables are introduced with the help of the characteristic energy 
6 -~ eL j ,  the characteristic length s and with the mass rn of a particle, e.g. densities are 
expressed in units of s -3, temperatures T in units of 6k~ 1 (kB is the Boltzmann constant), 
times and shear rates in units of to = s ( m / e )  1/2 and of to 1, respectively. The simulation 
was pefforned for a system of N - 83 = 512 particles in a volume V determined by the 
(constant) number density n = 0.84, the temperature was kept constant at T = 1 by 
rescaling the magnitude of the (peculiar) velocities. For comparison, the triple point is 
at n ~ 0.84 and T ~ 0.72. The potential is cut off at r = re = 2.5. Periodic boundary 
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conditions are used with the appropriate modifications for a plane Couette  flow. The 
equations of motion are integrated with a 5th-order predictor-corrector method (Gear), 
the Couette flow is simulated by the "homogeneous shear" algorithm [21]. 

In Figs. 1-3, the pressure components p+, p_, p0 as well as p and @ = p - p , q  
and the pertaining viscosity coefficients are displayed as functions of the shear rate 7 (in 
reduced units). The  kinetic contribution to the friction pressure and to 71+ is only about 
one tenth of the potential contribution. In an experiment the sum of both contributions is 
measured. In Figs. 2 and  3, only the potential contributions are shown. The dominating 
features are a shear-thinning and an increase of the pressure corresponding to a volume 
dilatancy mentioned in the introduction. At high values of 7, there is an indication of 
shear thickening. 
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Figure 1: The kinetic and potential contributions to the x-y-component of the pressure 
tensor (p+) and the shear viscosity 7+ as functions of the shear rate 7 from a NF.MD 
simulation for a Lennard-Jones-liquid at n = 0.84 and T = 1.0 (reduced L J-units; number 
of particles: N = 512). 
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Figure 2: The normal pressure differences p_ and p0 and the pertaining viscosity coeffi- 
cients (of. eqs 17, 18, 20) from the same NEMD simulation as in Fig.1. 

From practically all curves one inferes that  a crossover from one functional dependence 
on the shear rate 7 to another one occurs between 7 = 2 and 7 = 4. Two values (both 
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averaged over 16 000 time steps) are shown for the highest "),-value (7 = 20), one of them 
appears like an extrapolation of the small shear rate behavior. 
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The potential contribution to the pressure p, the difference @ = p - p , q  and 
the viscosity coefficient 702 (cf. eq. 21) from the same NEMD simulation as in Fig.1. 

At high densities, the viscous properties are mainly determined by the repulsive part of 
the potential. Results obtained for dense fluids of"sof t  spheres" (SS) with the interaction 
potential Css = 6ss (s /r )  ~2 or css  = r-~2 (in SS-units) are rather similar to those of dense 

L J-liquids. In Fig. 4, p,y and 7/+ are shown for the potential ¢ = r -12 + B r  -1 (1 - ~ r ) l  2, 

cut off at rc = 2~ -1 = 2.5. The term with the parameter B approximates the screened 
Coulomb interaction r-]e  - ~ .  The values B = 1 (circles) and B = 10 (squares) were 
chosen; in both cases n = 0.84 and T = 0.25 (SS-units). A plastic or pseudo-plastic 
behavior is found for small shear rates. Again a crossover in the shear rate dependence 
occurs, here for 3' between 1 and 2. The structural difference in these two regimes are 
discussed in section 3. 
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the  shear  viscosity 7/+ as funct ions of the  shear ra te  3, for a soft sphere like model  fluid 
( r -12-potent ia l  plus screened Coulomb interaction) at  n = 0.84 and T = 0.25 (reduced 
SS-units,  N = 128). 
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2 . 5  K i n e t i c  T h e o r y  

As the point of departure for the theory of the (nonlinear) viscous behavior of a dense fluid, 
a kinetic equation for the pair-correlation function g(r) is used [22]. The pressure terror 
p (in the following the subscript "pot" is omitted for simplicity) is obtained according to 
(29). The kinetic equation is written as [23] 

0g + r "  (Vv) .  0 • -~ ~rg + D(g) = O. (33) 

It is recalled that r = rl - r2 is the difference of the position vectors between two particles 
located at rl and r2. For the Couette geometry, the flow term can be written as 7Y~ 
where x and y are the components of r. In general, a decomposition of Vv into its 
irreducible parts cf. (12) yields 

r.  ( V v ) .  ~r = w-Z:+ 7: L (34) 

with the differential operators 

0 0 
-- r x Or, L ----r~-g r (36) 

which are the generators of SU(3). The "damping" term D(g) of (33) guarantees that in 
the absence of a perturbing flow g relaxes to its equilibrium value y~q. General properties 
a r e  

J D(g) dar = O, D (g~q) = 0. (36) 

h special form for D(g) has been proposed by Kirkwood [21] (diffusion in the potential 
of the mean force), modifications have been derived more recently [23], [24]. In order to 
highlight the effects which stem from the flow term one models D(g) by a simple relaxation 
time approximation [25], [26] 

D(g) ~_ r - '  (g -g~q) (37) 

involving a relaxation time r. 
Now, multiplication of (33) by r F, cf. (29), with (37) and use of (34) leads to the 

relaxation equation 

0-t p - 2  ~*-~p +2a~2 7 "p + . . .  + v - '  ~ =  - 2 G  7 .  (38) 

In (38) 

is the shear modulus which in thermal equilibrium, where gs = geq agrees with the 
expression of Born and Green [22] obtained by a rather different method. The quantity 
a2~ is given by a~2 = - ~  (1 + ~t,) for a simple power law potential ¢ = r ~. For this case, 
incidentally, G is proportional to p~t, i.e. G = - ~  (u + 3) prof. The dots in (38) stand 

for terms which couple the 2nd rank tensor p via ~ with tensors of rank l -- 0 and l = 4; 
these terms are disregarded in the following. 
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For a stationary situation (Op/Ot = 0), and in the linear flow regime (38)reduces to 
Newtons law (8) with the Newtonian shear viscosity 

~7 = Gr. (40) 

In the nonlinear regime, the terms involving w and ~ on the l.h.s, of (38) have to be taken 
into account. For a plane Couette flow, the ansatz (14) or (15) may be inserted into (38) 
to obtain equations for the quantities p+, p_ po. The inhomogeneity with G only shows 
up in the p+ equation. The w-term of (38) leads to a coupling between p+ and p_, the 

involving a2~ couples p+ and po. If these latter contributions are taken into account in 
lowest order only, the resulting expressions for the viscosity coefficients are 

for r/see (40). 

'7+ -- 71 (I + r27') -I , (41) 

71_ = "rr~+, (42) 
1 

~o = ~a22"yr~+, (43) 

Analogously to (38), an equation for the trace p of the pressure tensor can be obtained 
by a multiplication of the kinetic equation by r - F .  With the same approximation as 
discussed above one finds 

0 r_l ~. b p+ (p-po,)  = p (44) 

where ao2 is given by -u/3 for an interaction potential ¢ = r ' ,  i.e. ao2 --- 4 for u = 12. 
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Figure 5: The (high frequency) shear modulus G and the relaxation time r+ = ~7+G -1 as 
functions of the shear rate for the L J-liquid at n = 0.84, T = 1.0). 

Figure 6: The quantity ao2 = 6p (-rr+P+) -1 as function of the shear rate ~f for the L J-liquid 
at n = 0.84 and T = 1.0. 

Thus in a steady state one finds a relation of the form (21) with the viscosity coefficient 

~o2 = -a0~'rr~+.  (45) 

Clearly, 77+ --+ y and r/_ , Yo, %2 = 0 for 7 ~ 0, as expected. 
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How about a comparison of the theoretical results (41 - 43, 45) with the computer 
simulation data? An estimate for the relaxation time r can be obtained by dividing T/+ 
by the shear modulus G which can be calculated in the NEMD simuation according to 

= (r~j¢~j~ with r~j llr~Jll and ¢~j = ¢(ri~). In Fig.5, G and the ratio C V - 1 1 E E ~ ¢ j r / ~  2 4 , ' = 
~ J 

r+ = T/+/G are plotted for the LJ liquid at n = 0.84, T = 1.0. For 7 -< 2, both quantities 
show a rather weak dependence on 7; r ~ 0.1 is a reasonable value. Qualitatively, and for 
7 < 4, one finds the expected behavior: the non-Newtonian viscosity ~/+ decreases with 
increasing shear rate 7, the normal pressure coefficients ~/_ and r/0 are nonzero and have the 
correct sign; the same holds true for the shear dilatancy coefficient ~/02. Quantitatively, 
however, there are significant differences: the computer values for ~/+ show a stronger 
decrease with increasing 3' than expected due to (41), the other viscosity coefficients are 
smaller than predicted by (42, 43). Moreover, there seems to be a nonanalytic functional 
dependences of the form 

\ 

• • • )  • ,/+ = ~/(1 + A171/2 + (46) 

The quantitative discrepancy between the computer results and the theory may be caused 
by the approximations made to derive (41 - 43) and (45). Firstly, the tensorial coupling 

generated by the 7: i.-term of (33), (34) has been taken into account in lowest order 
only. Secondly, and probably more important, the damping term and consequently the 
relaxation processes to be incorporated into eqs. (38), (44) are more complicated than 

implied by (37): D(g), in general, possesses a whole spectrum of relaxation times and r F 
as well as r .  F are certainly not eigenfunctions of D(g). On the other hand, relation (45) 
is reasonably well obeyed in the L J-liquid for 7 < 4 (and 3' > 0.1 where the statistical 
accuracy of 6p is good enough); see Fig. 6 where a02 = -~]02/(7r+~/+), displayed as a 
function of 7, assumes a constant value for small 7. The simple theory presented here is 
a first step towards a microscopic understanding of the nonlinear flow behavior of dense 
fluids; this applies also to the nonequilibrium structure to be discussed next. 

2 .6  R e m a r k s  o n  C o l l o i d a l  S u s p e n s i o n s  

From the theoretical considerations presented so far follows that a non-Newtonian behav- 
ior can be observed ~,vhen the product ~,7 of the shear rate V and the structural relaxation 
time v are of the order of i (or at least about 10-2). Experimentally accessible shear rates 
are smaller than about 10 5 s -1. In a real simple liquid like Argon, ~- is typically shorter 
than 10-1°s and consequently 7v < 10 -s, thus there is no chance to see a non-Newtonian 
behavior. 

The situation is different in (dense) colloidal dispersions of spherical particles where 
one has much longer relaxation times (e.g. in the order of 10 -3 s to 1 s). Of course, a 
proper theoretical treatment of dispersions has to take the solvent-particle interaction and 
long range hydrodynamic effects into account. However, in many cases where the particle- 
particle interactions are the dominating ones, the rheological behavior and the structural 
properties are quite analogous to those of simple fluids [27]-[29]• Some colloidal dispersions 
may even be looked upon as model "macro-fluids" where the phenomena calculated for 
simple fluids can be observed experimentally. 
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3 T h e  S t r u c t u r e  o f  S t r e a m i n g  F l u i d s  

3.1 E x p a n s i o n  o f  t h e  P a i r - C o r r e l a t i o n  F u n c t i o n  for a P l a n e  
C o u e t t e  F low 

Nonequilibrium processes affect the structure of a fluid; the pair-correlation function g(r) 
deviates from its equilibrium value. The flow-induced distortion of g(r) is not only a 
feature occurring in the kinetic theory for the viscosity but  its spatial Fourier transform 
is also directly measurable in colloidal systems. Firstly, some general remarks on the 
functional dependence of g(r) on r, more precisely on r = Ilrll and ~" = r - l r ,  are made. 

In general, g(r) can be expanded with respect to the spherical harmonics Yt,,(f'), the 
expansion coefficients depend on r. Since g(r) equals g ( - r )  (replacing r by - r  corresponds 
to the relabelling of the names of the two particles of a pair), only even I occur in the 
expansion. Cartesian tensors, equivalent to the spherical harmonics, are easily adapted 
to the Couette geometry considered here. Symmetry arguments similar to those used for 
the friction pressure tensor, cf. (14, 15) aflows one to write g(r) as 

$, 3, ~ are the Cartesian components of L The scalar or "isotropic" part of g(r) is 

= (4~) -1 ] 9(r) d~. (48) gs 

The three 2nd rank tensorial coefficients gk(r) are given by 

gk = (4~r) -1 f Yk(r) g(r) d~ (49) 
J 

with 
y+ = 2~3, y_ = &2 _ 32, Y0 = ~ ~2 _ . (50) 

Note that  the Y+,_ are linear combinations of the spherical harmonics Y2+2. The dots in 
(47) stand for terms involving tensors of ranks l = 4, 6, . . . .  

One of the l = 4 terms in (47) is g4(r)K4(r)  with 

g4 is defined in analogy to (49). For the full set of the l = 4 terms see [30]. 
In thermal equilibrium, gs reduces to the equilibrium radial distribution function g~q 

and the quantities g+,-,0,4 vanish. 
Insertion of the expansion (47) into (29) and use of (14) yields 

p~ = - n' , ¢ ' e ~ ( , ) ~ ,  k = + , - , o  (52) 
5 

p - p,q = n '  r ¢' (gs(r)  - g~q) r '  &. (53) 

These relations show that the coefficients ~k, 702 as introduced by (20, 21) can only be 
nonzero if g~ ~ 0 and gs ~ g~q. In this sense, the viscosity coefficients provide an indirect 
evidence for the flow-induced distortion of the structure of a fluid. 
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distance r for the L J-liquid at n = 0.84, T = 1.0 and for the shear rates 7 = 2. For 
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go and -0.1 to 0.3 for g4; the range of the r-values is from 0.8 to 2.5. 
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In molecular dynamics simulations, the functions g s ,  g+ and more recently also g_, go 
and higher order terms have been extracted, an example is shown in Fig.7. By light 
scattering techniques, the structure function S(k) which is essentially the spatial Fourier 
transform of g(r) has been investigated for systems of interacting colloidal particles [10], 
[11]. It has been demonstrated that the gs,+,-,o inferred from simulation of  soft spheres 
(at the (reduced) density of 0.8) leads to a S(k) which is qualitatively very similar to that 
one observed experimentally; see the pictures presented in [31]. 

3.2 Genera l i zed  S toke s -M axwe l l  Re la t ions  

Insertion of the expansion (47) into the kinetic equation (33) with the relaxation time 
approximation (37) leads to coupled equations for the functions gs ,  g+, . . . .  If those 

contributions which stem from the ~: t. term of (34) are taken into account in lowest 
order only (tensors of rank l > 4 are neglected) the following generalized Stokes-Maxwell 
relations between the functions g... are found: [32], [33] 

g+ = -Blrg , (54) 

g -  ---- B2g+,  (55) 

gO ~ ~ 3 

I B (3g+ + rg ) (57) gs--geq - -  1"5 02 

2 = 1  (rg; 2g+) (58) 
g4 ---- 15 ~/21 B4 

with coefficients B... which depend on the shear rate 3, but not on r. In lowest order in ~, 
one finds: 

B1 ---- B2 = B3 ---- B02 ---- B4 = ~f'r. (59) 

The prime in (54 - 58) denotes differentiation with respect to r. 
The relation (55) stems from the term involving the vorticity w in (34), all other 

relations are'"generated" by the term involving the deformation rate tensor ~. In the 
linear flow regime, i.e. for 7 -~ 0, the quantities g_, go, g4 vanish, g s  approaches geq, and 
(54) reduces to the relation 

g+ = (60) 

Stimulated by a remark made by Poisson, both Stokes and Maxwell proposed a physical 
picture which, via a rather different route, leads to (60): distort the equilibrium structure 

geq by a small deformation which equals the deformation rate tensor ~ times the "lifetime" 
r. It is for this reason that (60) and its generalized versions (54 - 57) are referred to as 
Stokes-Maxwell relation. In molecular dynamics simulations, relation (60) has been tested 
some time ago, the nonlinear relations (54-57) and additional ones have been derived and 
tested more recently [30], [32], [33]. In Fig. 8, results for a N -- 512 particles soft sphere 
system are presented, the temperature T and the density n (in reduced units) are 0.25 and 
0.7, respectively. The data shown are for the shear rate 7 = 1. The full curves on of Fig.8 
are the functions g+,-,0,4 extracted from the simulation, the dashed curves are obtained 
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from the "measured" go and g+ functions according to (54, 56, 59). The vertical scales 
are different in the various graphs. Clearly, the relations (54-59) seem to hold to a much 
better degree than expected in view of the approximations involved in their derivation 
and on account of the discussion presented on the shear rate dependence of the viscosity 
coefficients in the previous section. 

'0 
I 

i 

g4 

I 
I 
I 
I/ 

Figure 8: Test of the Stokes-Maxwell relations (54-56, 58) for a r-12-soft sphere fluid at 
n -- 0.7, T -- 0.25 (SS-units). The full curves are the functions g+, g_, go, g4 as extracted 
from the NEMD simulation, the dashed curves are evaluated from the computed gs and 
g+ according to the r.h.s, of eqs. (54-56, 58) with adjustable factors B1, B2, .... The 
vertical scale is in arbitrary units, the (horizontal) r-values range from 0.8 to 2.5 just as 
in Fig.7. 

Notice however, that Fig.8 shows data for one fixed value of 7. How about the 7- 
dependence of the coefficients B1....? Experimental values for them are obtained, e.g. by 
comparison of the height of the first extrema of the functions given on the left hand and 
on the right hand sides of eqs. (54-56). Alternatively, one may equate integrals over these 
curves, in particular insertion of the relations (54-57) into (29) and use of (14), (20, 21) 
yields relations between the viscosity coefficients involving the B... coefficients: 

Q'rl+ ----" B1C (61) 

7-  --- B2rl+ (62) 
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3 
70 = (63) 

where (63) is only valid for the r-12-potential. The "experimental" B values obtained 
by the two methods are consistent with each other. The theoretical expressions (59), 
however, are too simple. More precisely, B1 can be fitted by 

, • . ) ' 1  = (1 + + .  (64) 

with the same coefficient A1 as in the non-Newtonian viscosity 7/+, the coefficients B~, B3 
deviate from the linear expression "Tr in the -)'-range where data are available. 

For an alternative solution of the kinetic equation for g(r) see [34]; calculations of the 
static structure factor S(k) in a fluid undergoing a viscous flow were also presented in 
[351-[38]. 

At high shear rates, the Stokes-Maxwell relations break down for two reasons. Firstly, 
higher (l > 4) rank tensor components of g(r) can no longer be disregarded and secondly, 
a long range (partial) positional ordering takes place. This phenomenon is described in 
the next section. 

3 . 3  S h e a r - i n d u c e d  P o s i t i o n a l  O r d e r i n g  

At high shear rates, a partial positional ordering of the particles occurs. The formation 
of planes parallel to the stream lines was observed for dense LJ [39] and soft sphere 
fluids [33]. Even more fascinating is the formation of strings of particles (parallel to the 
stream lines) which form a hexagonal pattern when projected onto a plane perpendicular 
to the flow direction. This phenomenon has first been noticed for hard spheres [40] and 
independently for soft spheres [41]. Fig.9 shows such a snapshot picture for a L J-liquid 
under pressure (T=I.0, n=0.84) at the shear rate 7 = 20 in the state corresponding 
to the smaller viscosity in Fig.1. The diameter of the circles indicating the size of the 
particles is equal to the distance where the L J-potential is zero. Notice that the strings are 
actually "tubes" which can accommodate up to 9 particles (within one periodicity box) 
but which contains as few as 2 particles. Thus the fluid is by far not as densely packed as 
the figure suggested at a first glance. There is room in the flow direction and this room 
is needed since the particles occassionally have to jump from one tube to one below or 
above in order to transport momentum. In Fig.9 also the projections of the velocities 
of the particles on the plane normal to the flow direction are depicted by arrows. In 
some tubes, the particles have very little transverse momentum whereas in others one 
notices fast particles obviously moving towards adjacent tubes. It must be stressed that 
the configuration seen in Fig. 9 changes with time. Pair-correlation functions g(r), on the 
other hand, when averaged over many thousand time steps will reveal those features which 
persist. There are marked qualitative differences noticed for g(r) in a sheared "amorphous 
fluid" and in a fluid with "string" or "tube" ordering. 

The partially ordered states at high shear rates can be looked upon as a new nonequi- 
librium (shear-induced) ph£se; the transition from one state into the other occurs in a 
rather narrow range of values for the shear rate % The crossover in the shear rate de- 
pendence of rheological properties seen in Figs. 1-4 is associated with this transition. 
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The formation of the long range order takes place over time considerably longer than the 
relaxation time ~" mentioned above; stress-overshoot is observed. 

Figure 9: Snapshots of the positions and the velocities of 512 particles of a L J-liquid at 
n -- 0.84, T = 12, 7 --- 20 in a well ordered state. The projection of the 3-dimensional 
system is on the y-z-plane which is perpendicular to the flow direction. The particles are 
marked by circles with the radius r -- 1; the velocities are indicated by arrows. 

At still higher shear rates there is a tendency for the particles to organize themselves 
in blocks of several layers parallel to the flow velocity. Thus the actual velocity profile 
deviates from the assumed linear Couette profile. This was already noticed some time 
ago (with soft sphere fluids) indirectly via a break down of the "thermostat" which was 
not due to the therm0stating procedure as such but was caused by the failure to enforce a 
linear flow profile above a certain shear rate. This prompted us to change the simulation 
algorithm such that the system has the freedom to choose its velocity profile [42]. The 
shear rate ~ is prescribed only as a velocity gradient averaged over the height (direction 
of the velocity gradient) of the periodicity box. It turned Out that for small and inter- 
mediate shear rates the system "voluntarily" adjusts to the linear Couette profile and no 
differences are noticed between the results obtained with the newer and with the older 
NEMD simulations until the partial long range positional ordering sets in at a critical 
value ~, -- %. Beyond that point, a plug-like flow profile as shown in Fig.10 is found (L J- 
liquid, T = 1.0, n = 0.84, ~ = 4.0). The arrows indicate the mean flow velocities in 32 
layers (perpendicular to the velocity gradient) averaged over several thousand time steps; 
the slope of the dashed line is equal to the mean velocity gradient, i.e. to the prescribed 
shear rate % A snapshot projection of the positions into a plane perpendicular to the 
flow direction is also shown in Fig. 10 with the particles of two neighboring noncubic 
periodicity boxes. Clearly, there are amorphous regions and layers with a relatively high 
degree of spatial ordering. The rheotogical properties extracted from the simulations with 
the old and the new algorithms are identical for -), < %; for "t > % (i.e. in the positionally 
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Figure 10: Snapshot projection of the positions of the particles on the y-z-plane and the 
velocity profile in the x-y-plane for a L J-liquid at n = 0.84, T = 1.0 and 7 = 4. The 
periodicity box has been stretched in the y-direction; only the mean velocity gradient 7 
is controlled, resulting in a plug-like flow (W. Loose, TU Berlin). 

ordered state) the viscosities found with the new method (profile-unbiased thermostat: 
PUT [43]) are somewhat smaller than the old ones displayed in Fig.1. 

The problem of thermostatting and the formation of spatial structures in NEMD 
simulation has been discussed in detail in [44]. The oecurence of this nonequilibrium phase 
transition can also be inferred from a stability analysis [42]. The positional ordering also 
occurs in boundary driven flows devoted to the study of small slip phenomena [45]. In 
an experiment where the pressure rather than the volume is kept constant, it is expected 
that the transition from amorphous to the long range ordered state occurs gradually. 

3 .4  Light Scattering and Small Angle Neutron Scattering 

The intensity I(k) measured in a light scattering or small angle neutron scattering (SANS) 
experiment is proportional to the product P(k)S(k) of the relevant form factor P(k) and 
the static structure factor S(k). Here k is the scattering wave vector, i.e. the difference 
between the wave vectors of the incident and the scattered radiation. As mentioned before, 
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Figure 11: Contour plots of the structure factor S(k) calculated in a NEMD simulation 
of a soft sphere like model system [42] (n = 0.84, T = 0.25) in a state similar to that one 
shown in Fig.9 and the intensity I(k) = P(k)S(k)  (with the theoretical form factor P(k) 
for a sphere with radius 0.55) in the x-z-plane corresponding to a small angle scattering 
experiment with the incident beam along the direction of the velocity gradient (W. Loose, 
TU Berlin). 

S(k) is essentially the spatial Fourier transform of g(r), more specifically, for k ~ O, 

S(k) = 1 + n / e ik'r (g(r) - 1) dar. (65) 

In the computer simulation, S(k) can be extracted as a N-particle average according to 

+ (66) 

The k vectors have to be chosen sudi that they "fit" into the periodicity box. The small 
angle scattering with a. detector field can be mimiced by the choice of a large set of k 
Values in a plane perpendicular to the direction of the incident beam. In [46], intensity 
plots of a sheared model fluid are shown for three scattering geometries. 

Light scattering experiments [10], [11], [47] on the shear flow induced distortion of the 
structure have stimulated a good part of the theoretical work described here. SANS ex- 
periments on sheared dense colloidal dispersions have also been devoted to shear-induced 
melting [12], [48]. More recently, the shear-induced positional ordering was found [49] in 
the low viscosity state of shear-dilatant dispersions [50]. 

In Fig.ll ,  contour plots of S(k) and P(k)  S(k) are shown for a structure factor ex- 
tracted from a NEMD simulation of a sheared model fluid [51] (soft spheres with a screened 
Coulomb interaction, cf. section 2.4; n = 0.84, T = 0.25, B = 1, SS  -units) in a highly 
ordered state similar to that one shown in Fig.9. For the form factor P the theoretical 
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expression for a sphere with radius 0.55 was used. The theoretical intensity I ,,, P(k)S(k) 
perfectly matches the SANS-intensity observed for the same scattering geometry, where 
the incident beam is parallel to the gradient direction (y-axis). 

4 C o n c l u d i n g  R e m a r k s  

Here, the main emphasis was on the interrelation between rheological and structural 
properties in fluids of spherical particles as studied by kinetic theory and NEMD. It 
should be mentioned that general thermodynamic considerations [52] can be useful for 
the modelling of flow properties. Furthermore, the NEMD computer simulations can and 
have been extended to the study of the flow alignment, the anisotropy of the viscosity 
and the local structure in polymeric liquids [53] and in anisotropic fluids such as nematic 
ane nematic discotic liquid crystals [54] and oriented ferro-fluids [55], [56]. 
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1 I n t r o d u c t i o n  

It is well-known that the dynamics of objects in fluids plays a very important role 
in the study of transport phenomena or in the rheology of suspensions and polymer 
solutions [1,2,3]. In the formulation of the problem, the fluid is usually assumed 
to be Newtonian while objects may have a defined shape (spheres, spheroids, 
rods, fibers,...), they may be deformable (drops, bubbles,...) and they can adopt 
complicated structures (chains, coils, rings, branched structures,...). 

It is clear that the perturbation caused by the motion of the objects through the 
fluid will depend on their geometry. If they have a well-defined and simple form 
(for example, spherical) one can readily compute the force exerted by the fluid on 
them and, from this, one gets the expression for the friction or mobility tensors [4]. 
In many cases, however, the geometry may be complicated or the configuration 
may depend on time. For this reason it may be convenient to introduce simple 
models finding a compromise between reality and solvability. 

The case of polymers is particulary interesting. In fact, macromolecules have 
conformations ranging from the flexible chain to the rigid rod. It has become 
costumary to assume that coils behave as hard or permeable spheres with an 
effective radius. These models where introduced by Kirkwood [5] and Debije, 
Bueche and Brinkman [6]. Dumbbell models have also been used to describe the 
dynamics of polymer chains. In these models, one assumes that the chain reduces 
to two spheres (beads) joined by a rigid link [7,8] or an spring [9,10]. They have 
been extensively discussed in ref. [11] and in Prof. Bird's lectures. A generalization 
of this model can be introduced by considering the polymer constituted by several 
beads connected by springs (bead-spring chain model). For stiff chains, the so- 
called worm-like chain model has also been proposed [12,13] 
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To describe the dynamics of a chain, we must consider the forces acting on 
each bead or segment. Hydrodynamic forces are due to the friction of the beads 
with the fluid and to the presence of hydrodynamic interactions between them [1]. 
Brownian forces appear as a consequence of the colloidal nature of the beads and 
originate in the presence of fluctuations in the fluid [14]. There are also internal 
forces between segments of the chain and external forces related to the presence of 
external fields. The simplest dynamics was studied by Rouse [15] who considered 
that the internal forces were elastic. The interaction of the beads with the fluid 
was introduced through the friction force of the single beads given by Stokes law. 
The model was generalized by Zimm [16] incorporating hydrodynamic interactions 
between the beads. 

Our purpose in this paper is to develop a general formalism including retarda- 
tion effects of the hydrodynamic interactions to analyze the dynamics of polymers 
in solution. To this end we have organized the paper as follows. We plan to dis- 
cuss the derivation of the equation of motion of the polymer in section 2 for both 
flexible and rigid chains. In the first case we study the influence of the nonsta- 
tionary motion of the fluid on the dynamics of the chains [17]. For this purpose 
we develop a general formalism whose starting point is the Navier-Stokes equation 
with random and induced force sources [18,19]. The random forces account for 
the existence of fluctuations in the fluid while the induced forces are related to the 
perturbations caused by the motion of the segments. Crucial in our analysis is the 
obtention of the nonstationary mobility kernel which incorporates time-dependent 
hydrodynamic interactions. In the second case, we show that the induced forces 
method also enables us to obtain the equation of motion of rod-like polymers. In 
section 3 we study the resulting dynamics of the polymer. We then get information 
about the motion of the centre of mass and the confomational changes of flexible 
chains. For rigid rods our theory enables us to reproduce the translational and 
rotational diffusion coefficients, given by Yamakawa, in a simple manner. 

2 E q u a t i o n  o f  m o t i o n  o f  a p o l y m e r  

Our purpose in this section is to derive the equation of motion of a polymer. We 
start from the Navier-Stokes equation in which we have included stochastic and 
induced forces. The properties of the former follow from fluctuating hydrodynam- 
ics [20] while the latter account for the presence of particles in the fluid. The cases 
of flexible chains and rigid rods will be examined. 
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2.1 F l e x i b l e  cha in  

We will consider a flexible polymer composed by N beads, moving through an 
incompressible Newtonian fluid of density p and viscosity ~. The motion of the 
fluid is governed by the Navier-Stokes equation 

Ot = - V .  P(~', t) (2.1) 

which is valid in the linearized regime, together with the incompressibility condi- 
tion 

v .  ~ = o (2.2) 

_% 

In eqs. (2.1) and (2.2) ~7(~*, t) is the velocity field and P(~', t) is the pressure tensor. 
This quantity is given by 

Ovo] (2.3) 
P,~ = p6,~ z - rl ~,Or,~ + Orz ] + H ~  

where p is the hydrostatic pressure and H,R~ is the random pressure tensor. This 
quantity defines a Gaussian white noise stochastic process whose correlations are 
given by 

~ R  

< I I  (~',t)> = 0 (2.4) 
R "* R "~! t < II~#(r, 2kBT~I 6 ( 7 -  ~") 5(t - t') (2.5) t ) II ,u(r  , t )  > = Aa~, u 

where 

2 5 (2.6) 

To compute the mobility of the particles we will use the induced force method 
[18,19,21]. One then reformulates the problem by assuming that the fluid field is 
also defined inside the particles and the perturbations caused by their motion are 
introduced through induced forces. The Navier-Stokes equation is now written 

0~(T. t) :R 
P Ot - -vp(~ ' ,  t) + ,7v2,~(~ ', t) + E #,(~', t) - v .  r[ (r. t) 

i 
(2.7) 
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where Fi is the induced force density on the i th particle. Of course, this induced 
force density is only different from zero inside and on the surface of the particle 
and is chosen so that 

p(~, t) = 0; I ~ ' - /~ i l  < a (2.8) 
~7(r, t) = ~7i(t); I ~'-/~il _< a (2.9) 

where Ri(t)  are the position vectors of the centre of the spheres. Equation (2.8) 
follows from the fact that the particles are rigid while eq. (2.9) is simply the stick 
boundary condition at the surface of the spheres. 

It follows from these expressions together with eq. (2.7) that the induced force 
density is given by 

= h(~' , t) .  P (F',t) 5(1~'- f f t i ( t ) l -  a) 

+ [ p ~ -  V.  IIR(~',t)] O(a--I~'--  /~,(t)l) (2.1o) 

where h(f',t) = (~'-/~/.)/l~'-/~il. 

Now we will formally solve eq. (2.7) for the velocity field ~7(f¢, t). One gets 

v(k,t) t) +/_'  t'e kk) 
P 

(2.11) 

where u = 71/p is the kinematic viscosity, ~, the unit matrix, k = f~/k and go(k,t) 
is the velocity field due to the presence of sources at infinity. 

Since we will consider length scales larger than the radius of the beads and 
times so that t >> a2/u, we will assume that the induced force density is uniformly 
distributed at the surface of the beads. In such a case, eq. (2.10) may be replaced 
by 

" -  (sinka~ ffi(~= O,t) ffi(~g, t) ~' e -ik'R~(t) \ ka ] (2.12) 
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where ff/(/~ = 0, t) is the total force exerted for the ith-particle on the fluid. The 
drag force experienced by the bead is FH(t) -- - f f i (k  = 0, t). Substituting the 
value of the induced force in eq. (2.11) we get 

~(Z,t) ~o(Z,t)- f_ "t'e -~+~('-'') (~- kk) 
P 

[~i "" (sinka~ -'H _~R + ] • e-i~'R+(t) \ ka ] Fi (t) + ifc. H (k,t') (2•13) 

Using stick boundary conditions, we can obtain the velocity of the ira-bead, 
u-~(t), by averaging the velocity field on the surface of the bead. One then obtains 

~+(t) 1 
-- 47ra 2 f d~'~(~',t)5(l~'- R i ( t ) l - a )  

1 ei~.p~ (s inka~ + + 
-- (2r) 3 f dfc v(k,t) [ k a ]  

Substituting now eq. (2.13) into eq. (2.14) we finally get 

(2.14) 

3 

(2•15) 

where incident velocity field was assumed to be given by vo(r, t) = ~'' ft. Here fl 
is a traceless matrix• The time-dependent mobility kernels were found to be given 
by 

"'" (sinka) 2 ( ~ -  kk) (2.16) 
f- e-~k~e'~'~ \ ka ] p 

with T ---- t - -  t' and/~ij  = / ~ i ( t ) -  Rj(t)• Furthermore, the random term is 

g~(t) = - / t o  ° dt' f df~ e_~k~(t_t, ) (s inka~ ei~.~,(, ) 
(2~)3 ~, ka ] 

(~- kk) ri~• H=R . ] p • [ (k,t')] (2.17) 
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We have considered in eq. (2.16) t ha t /Z i ( t ) -  Rj(t ' )  ~_ R i ( t ) -  fftj(t) in view of the 
linearization of the Navier-Stokes equation. 

On one hand, the explicit expression for the two-particle mobility kernel may 
easily be evaluated if I/~j] >> a. In that case, we can take ka = 0 (point particle 
approximation) in eq. (2.16). Then, the integration over/~-space can be performed, 
arriving at 

~ij(T;Rij)- p(47rpT)3/2 ~+ 1-~V~ V~ 1 ~  ( 4?rp aj  a~ Rij 
(2.18) 

@(x) being the error function defined as 

x 

(2.19) 

This result is valid if t > >  a2/u and Rij ~ a. The single-particle mobility kernel 
can also be obtained from eq. (2.16), setting/~ij = 0. For our purposes, however, 
only the two-particle mobility kernel is required. After integration in time, eq. 

.% ..  

(2.18) reduces to the Oseen tensor T(Ri j )  defined as 

~(Rij) - l (~~- Rijf~ij) (2.20) 87r~Rij 

where Rij is the unit vec tor  ff~ij/Rij. 

On the other hand, the random parts of the velocities given in eq. (2.17) may 
be shown to satisfy 

< ~TR(t) > = 0 (2.21) 
"*R "*R t < u i ( t lu  i ( t )  > = kBT~i j ( t  - t';/~,i) (2.22) 

using the properties of the stochastic part of the viscous pressure tensor given 
through eqs. (2.4) and (2.5). 

The equation of motion of the ith-particle is given by 

M du~i(t) -- i~H(t)+ F//nt(t)+ ff/~xt(t) (2.23) 
dt 
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where M is the mass of a segment, ~H is the total  force exerted by the fluid on 
the ith-paxticle, ~[~t is the force due to internal interactions with other segments 
a n d / ~ t  includes the forces due to external fields. We can then solve for ~H from 
eq. (2.23) and replace it into eq. (2.15), yielding 

u~.(t) 

(2.24) 

where the continuous chain limit has been taken. Here, the mobili ty kernel is given 
by eq. (2.18) which is valid for I/~ml >> a. If I/~,,~ 1 ~_ a, we will still use eq. (2.18) 
while in the case where I/~n,~l < a we will assume tha t  the mobili ty is zero. This 
cutoff is necessary in order to avoid the divergences which originate from the use 
of a continuous chain [22]. 

Notice tha t  eq. (2.24) may be transformed into a generalized Langevin equation 

[23]. In fact, by multiplying this expression b y t h e  friction tensor ~mn(t) (defined 
as a generalized inverse of the mobility kernel #~m(t)) and integrat ing over t and 
m one gets the generalized Langevin equation 

where the random term Fff(t) is 

- ~m(t'). ~) 

+ #:,t(t) + ~ ( t )  (2.25) 

(2.26) 

This  r andom force has zero mean and satisfies the fluctuation-dissipation theorem 

< ff',R(t)F~(t') >= ksT~nm(t- t';/~nm) (2.27) 

which follows from eqs. (2.21) and (2.22). 

Now we want to introduce an explicit form for ~int Let us consider the case 
where no external fields axe present. If 7-/is the interact ion potential ,  the forces 
between segments are given by 
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~,i,,t 67-I (2.28) 
- - 

According to the elastic chain model with short-range interactions between seg- 
ments, we can assume that  7-/is given by 

where 

(2.29) 

3kBT 
H - b2 (2.30) 

b being the effective bond length. In the case in which 

kBTg 5(-~n - -~m) (2.31) 
- - 2 

being the excluded volume, we have the usual model for the excluded volume 
interaction [24,25]. In such a case, we can finally write 

Ot 
, N d m # . m ( t  - t';/5~ - / ~ ) -  (2.32) 

H ~ ksT~ 0 N 
2 0_ ]o 

where use has been made of the definition (OR,(t)/Ot) - ft,(t). A similar equation 
has also been obtained by Edwards and Freed [26] using a variational principle. 

2.2 R ig id  r o d  

Another  interesting situation is the case where the polymer is rigid. In this case, we 
have a considerable reduction of the number of degrees of freedom of the macro- 
molecule. Here we will use the quasistatic approximation for the Navier-Stokes 
equation because, due to the linear configuration of the polymer, the mass of fluid 
moving with the macromolecule is so small that  the inertial effects disappear in 
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a very short time. We will consider that  the polymer has cylindrical shape with 
its length L larger than its radius a, instead of a line of beads of the same radius 
("shish kebab" model). Following a procedure analogous to the one of the preced- 
ing section, we will derive a Langevin equation for every longitudinal element of 
the rod which will be used to obtain the equation of motion of the centre of mass 
and its orientation. 

We will consider a rigid rod suspended in a Newton±an fluid. The position of 
the centre of mass of the rod will be denoted b y / ~  and the unit vector along the 
cylindre's axis by g. We will take cylindrical coordinates with the origin placed at 
the centre of mass of the rod and the revolution axis coinciding with the cylindre's 
axis. A point in space will be then located by the position vector 

~" = s g + ~'± (2.33) 

where ~'± is a vector orthogonal to g. The points on the surface of the rod satisfy 
]~'±l = a and ]s] <_ L/2 

The Navier-Stokes equation in the creeping flow approximation is given by 

~ R  

o = - v p ( ~ ' ,  t) + ~ v 2 ~ ( ~  ', t) + P(~', t) - v .  rl (~', t) (2.34) 

where ff(~', t) stands for the induced force density introduced in the same way as in 
subsection 2.1. In this case the induced force density is only nonzero at the surface 
of the cylindre. For the flexible chain case this was only true approximately. We 
can then write 

P(~', t) = f(~', t)~(1~'±1-a)O(L/2 -Isl) (2.35) 

.., --* .~s 

where f(r, t) is given by h(~', t ) -  P (~, t) at the surface, where now h = r'±/]r'±l. 
Notice that  in eq. (2.35) we have neglected the induced forces due to the end 
surfaces, since the corrections introduced by presence of these surfaces are of the 
order alL. 

We can formally solve eq. (2.34) in Fourier space, yielding 

" "  = v 0 ( k , t ) + - -  v ( k , t )  -" -' ~k2 • $ ( L  t) - iZ .  n ( k , t )  (2.36) 
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The Fourier transform of the induced force density is obtained from eq. (2.35) 
giving 

ff(#,t) = f d~e -'z~ f~',t)6(le'±l -a)O(L/2-  I~1) 
= fL_:/2 dse_ikll s 2r d e -ik±a t )  f0 ~ c°s~ f(s '  ~; (2.37) 

where kll and k± are the parallel and radial components of the vector f~ with respect 
to the g-axis and ~ is the azimutal angle. For a very thin rod as the one we are 
dealing with, we can take f ( s ,  p; t) independent of p as a good approximation, 
leaving only its dependence in the axial coordinate. We can then write 

rL/2 _ . ,  

F(Lt)  = Jo(kla) LL/2dse ,~,,s [(s,O (2.38) 

where f(s, t)  = 27ra f(s, ~;t )  and Jo(x) is the Bessel function of zeroth order. The 
formal solution given in eq. (2.36) can also be writ ten in real space as 

~(~',t) ~o(~',t)+ fde"~(~'-~") [" " _~R ] = • F ( r  , t )  - v .  n ( ~ ' , t )  (2.39) 

where T is the usual Oseen tensor defined in eq. (2.20) 

Following the same line of reasoning as in sec. 2.1 we use stick boundary 
conditions. Neglecting rotations around g-axis and due to the fact that  the a << L, 
the velocity of a surface element is approximately given by the velocity of the 
corresponding point on the g-axis. If we denote a point on the axis by fi(s, t), we 
can write 

O # ( s , t )  1 

ot 
(2.40) 

which is simply the average of the fluid velocity over the contour of the transverse 
section of the cylindre. Using now the formal solution given in eq. (2.39) one 
arrives at 

2~a aZ(s, t) 
Ot 

{ ~o(~,t) 

- - =  f de' ~(l~-'l- a)O(L/2-H) ~(s -  s ')  

(2.41) 
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By assuming that the flow in the absence of polymer is homogeneous and given 

by v~o(r, t) -- (~*+/~) .~, the first integral on the right hand side of eq. (2.41) simply 
gives 2ra #(s, t). The term containing the induced force density transforms into 

f~/~ { d~, ~,~,,(,_~,) ~ ~- kk 27r, j_L/2ds' f (270 3 J ~ ( k ± a ) ~  • f(s') (2.42) 

from which we can identify the mobility kernel 

dk eikH(s_s, ) J2(k±a ) ~ -  kk (2.43) 

Finally, the random part of the velocity is defined by 

2ragR(g,t) = 

- f d~' 6(1~'±' I - a ) O ( L / 2 -  N ) 6 ( s -  s ' ) f  d~'"~(("-  ~'"). IV-I]R(7", t)] 

dfc eikH(,_,, ) Jo(kza) ~ -  ~ f ig .  =R . 27raJ (27r)3 77 k2 " / 17I (k,t)} (2.4 

where, in deriving the last line we have ore±ted the function O(L/2-  Isl), implicitly 
considering that the functions of s are defined only in the interval - L / 2  < s < L/2. 
Let us calculate the averages of the random part of the velocty. Clearly, we have 

< gR(s, t) > =  0 (2.45) 

After some algebra, we can obtain 

< gR(s,t)gn(s',t') > =  2kBTfi(s - s ' )5 ( t -  t') (2.46) 

As far as the longitudinal induced force density j~s, t) is concerned, it can be 
considered as minus the total force per unit legth fn(s ,  t) exerted by the fluid. 
After neglecting inertial effects, we can then write the force balance 

o = y ~ ( ~ , t )  + f ' ( s ,  t) +/ '~'(s, t) (2.47) 
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where tim is the force per unit legth due to interactions with neighbouring seg- 
ments and, consequently, its direction is parallel to ~-axis..f~zt is the force per 
unit legth due to external fields. 

In view of these considerations, eq. (2.41) can be written in the final form 

o t  - Z ( s , t ) .  

+ [f-,(s', t)+ t)] + ,7'%, 0 

in which it will be used in the following section 

(2.48) 

3 P o l y m e r  d y n a m i c s  

Once we have obtained the equation of motion of the polymer we then proceed to 
analyze the dynamics. In particular, we will focus our attention on the motion of 
the centre of mass for both, flexible and rigid chains, and on the conformations of 
the polymer for flexible chains. 

3.1 D y n a m i c s  of  a flexible chain in equ i l i b r ium 

We will start our analysis by introducing the Gaussian chain. The equation of 
motion for such a chain follows from eq. (2.32), simply by neglecting excluded 
volume interactions. As is well-known, the distribution function for the segments 
follows Gaussian statistics and the radius of gyration RG is given by [27] 

N1/2b 
P ~ -  v ~  (3.1) 

To simplify our analysis we will use the so-called "preaveraging" approximation 
first introduced by Zimm in the static case which consists" of substituting the 
configurational-dependent mobility kernel given in (2.18) by its equilibrium aver- 
age 

2 1 
</~.m(r; /~m) >~q = 3p(4rv)3/2 (b=tn - ml/6v + r)a/2 

_= # , .~( ' r ) l  (3.2) 
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where the equilibrium average is computed by using Gaussian statistics for the 
distribution of the vectors /~m. The steady-state mobility can be obtained from 
eq. (3.2) simply by integrating in time 

u fo ~ dr ]£nm(T) = 1 (3.3) 
tz,,,~ = ~rb(6~l n _ ml)1/2 

which agrees with the result obtained after averaging the Oseen tensor [27]. The 
average and the correlations of fir axe obtained from eqs. (2.21) and (2.22) by 
also averaging over the equilibrium distribution function. The final form of the 
equation of motion then follows from eq. (2.32) by neglecting the excluded volume 
term. One then obtains 

Ot - f'--~dt' fo dm#~m(t- t ' )  L Om 2 Ot,2 j + u ~  

(3.4) 

The analysis of collective motions may be carried out by using the development 
of/~n in normal modes 

N 

20+ 2 E 2 (t) (3.5) 
p = l  

Here pp(n) = cos(p~n/N), which satisfy the orthogonality condition. The normal 
coordinates Xp(t) are defined as 

.~p( t )  : fO N dn vp(n) (3.6) 

where Xo(t) describes the motion of the centre of mass and Xp(t) the internal 
rearrangements with characteristic length scales of the order of RG/p. 

According to eq. (3.6), it is possible to obtain from eq. (3.4) the equation of 
motion for the normal coordinates 

G~Xp N t 
Ot -- ~ f'-~ dt' t t p q ( t  - -  t') 

q=0 

KqXq-  N M ~ ]  + ~Rq 
Ot J 

(3.7) 
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where use has been made of the definitions 

Hp27r 2 6kBTp27r 2 
K p -  ~ -  Nb 2 (3.8) 

1 N 
#pq(r) - N2 fo dndm#nm('r)~p(n)qoq(m) (3.9) 

1 N 
wR(t) = N fo dnff~(t)pp(n) (3.10) 

Here, I(p is the p-mode effective elastic constant, #pq is the normal mobility matrix 
and ~7 R is the normal stochastic source satisfying the properties 

< ~ ( t )  > = 0 
-~R --*R t < wp (tlwq (t ) > = kBT#pq(t- t')~ (3.11) 

which follows from eqs. (2.22) and (2.21) 

Explicit values for the mobility matrix elements #pq can be obtained by using 
the mobility given by eq. (3.2) together with eq. (3.9). One gets 

2 (6. 3/2 
#re(T) -- 3(4~v)3/2N2 \-~] 

pTrn ~qTrrn,/N-n 1 ( ~ _ )  
f0 N dn  [ c o s ( ~ - )  COS~,----~) dTn (I,nl + 6vr/b2) 3/2 cos - 

i ~qTrm, N-. 1 (qTrm) 
c°s(P~n)N s n~--~-) f_~ d~  (Iml + 6vr/b2) 3/2 sin 7 ] (3.12) 

As an approximation, we will consider that,  in the case where p ¢ 0 and q # 0, 
the limits of the integral over m can be extended to infinity [27]. Contrarily, when 
p = 0 and q = 0 we will calculate the integral exactly. Consequently, on one hand 
we have 

,pq(tp) - ,p(tp)6~q = ~ q T ~  Cp(t.); (3.13) 

Here, 7p - R2G/(vTrp) is the relaxation time of the perturbat ion caused by the 
motion of a blob of radius Ra/(Trp) 1/2, tp - t/Tp is a dimensionless time and ~p = 
(12r3)1/2r]pl/2N1/2b is the effective friction coefficient for the p-mode. Moreover, 
the functions Cp(tp) have been defined as 
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2 )  1/2 
Cp(tp) = costp ( 1 -  2S(7r~p))- sintp ( 1 -  2c(~f/pp))- (3.14) 

where the functions C(x) and S(x) are the Fresnel integrals. 

On the other hand, the element/Zoo reduces to 

1 N 3 
#o0(7-) = - ~  fo dn dm #,,re(T) -- 

4~oTo 
- - -  C o ( t o )  (3.15) 

where we have defined the relaxation time To -- R2e/v, the dimensionless time to =- 
t/ro and the effective friction coefficient ~o - 3(6r3)1/2~lN1/2b/8, whose meaning is 
analogous to their corresponding quantities introduced previously, and the function 
¢o(to) is 

Co(to) = to  1/2 -- 2[(1 -k- to) 1/2 -- tlo/2] (3.16) 

Using the dimensionless quantities we can finally rewrite eq. (3.7) in the more 
suitable form 

0)~o t° 3 N M  . ,-0220 -a  (3.17) 
Oto - f~oo dt" 4--(-~oro C°( t ° -  t° ) O-~-S a + r°w° 

for the zeroth order mode and 

[ - dt'p 
N M  0 2 2 q ]  - ,n 

--£-ff ~ -t- TpWq 
~-~ ~J 

(3.18) 

for higher order modes. 

Our analysis will mainly be focused on the description of the motion of the 
centre of mass. The inertial effects due to the finite mass of the polymer are very 
small; however, for flexible chains the inertial effects due to the amount  of mass of 
fluid partially moving along with the polymer are much more important.  To justify 
our assertion it is convenient to define the dimensionless parameter 70, comparing 
the relaxation time of the inertial effects due to the mass of the polymer, NM/~o, 
with the relaxation time of fluid perturbations, To 
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3 N M  p* a 3 1 
Vo - 4~o~-o p b 3 N 1/2 << 1 (3.19) 

p* being the polymer density which is usually comparable to the density of the 
solvent. 

We now proceed to the calculation of the centre of mass velocity correlation 

function < Xo( to )Xo(O)  >. This quantity may be obtained from eq. (3.17) using 
:* -~R the fact that  the random term satisfies < Xo(O)w  o (to) > =  0 [23]. One then obtains 

2o(t'o)2o(O) < -~o(to)~o(O) > =  - % / : o  dt'o Co(to - #o)-~o < > (3.20) 

This equation should be solved using the initial condition 

"-, "~ k B T  z (3.21) < Xo(O)Xo(O)  > =  N M  1 

dictated by the law of equipartition of energy. The velocity correlation function 
can be obtained simply by using Laplace transforms which, for an unspecified 
function A(t), reads 

A ( s )  = fo ~ dt e -st A ( t )  (3.22) 

Then, Laplace transforming eq. (3.20) we get 

:- :- "~o¢o(So) :- :. 
< Xo(so)Xo(O) > =  1 + 7o So¢o(So) < Xo(O)Xo(O) > (3 .23)  

where So = STo. In the time domain we are considering to ,'~ 1, we can set So "~ 1 
in eq. (3.23). In that  case, %So << 1 consequently, eq. (3.23) transforms into 

< Xo(to)Xo(O) >~_ -yo Co(to) < Xo(O)Xo(O) > (3.24) 

In expression (3.24) the dynamics of the fluid is still present due to the time 
dependence of the memory kernel. However, the approximation we have introduced 
neglects the inertial effects due to the polymer mass according to (3.19). In view of 
the expression of Co(to) given in eq. (3.16), we have that  for to << 1, the correlation 
function behaves a s  t -1/2 while, in the long-time limit, one has 
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"-. 2 kB T 
< Xo(to -+ ~)Xo(O) >---~ 3 p(4~ut) 3/21 (3.25) 

Notice that  this behaviour is the same as the one for a Brownian particle [28], 
showing the hydrodynamic long-time tail t -3/2. This t ime behaviour is in fact 
independent of the coupling of modes we have neglected, due to the fact that  no 
reference to characteristic lengths of the system remains in this limit. In that 
sense the behaviour of the velocity correlation function for long times is universal. 
However, the short-time behaviour we have obtained may in principle be modi- 
fied when the coupling between modes through off-diagonal terms in the mobility 
matr ix is taken into account. 

The diffusion coefficient is obtained from eq. (3.16) using the corresponding 
Green-Kubo formula 

Da 
1 t o o  "-~ 

= ]o Xo(O) > 5 dt < Xo( t ) .  

kBT 8 kBT 
-- ~o -- 3(67~3)1/2ubN1/2 

(3.26) 

which is precisely the expression given in the continuous Zimm model [27]. 

From our analysis we can also compute the mean-square displacement 

5Xo(t) - Xo(t) - Xo(O) = fot dt' ~o  (3.27) 

In view of eq. (3.24) one gets 

6 k . T  o { 3 / 2 2  } < 6x2°(t) > =  to + t o - [(l + to) 5/2-t5o/2-1] (3.28) 

which, in the long-time limit, reduces to the well-known result 6Dat for the Zimm 
model. From expression (3.28) we conclude that,  for times t ~ 60T0, our model 
still introduces corrections to the Zimm model of the order of 10 %. This is due 
to the fact that  the behaviour of the mean-square displacement slowly approaches 
the diffusive regime [29,30]. 

As far as the motion of the internal degrees of freedom is concerned, there 
appears a new time-scale introduced by the effective elastic constant K v. It is 
then convenient to introduce the dimensionless parameter  
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_ rpI(p k B T p  1/2 
o~p - ~p . . . .  prl2bN1/2 << 1 (3.29) 

which compares the relaxation time due to fluid perturbations ~-p, caused by the 
motion of a blob of size R v / v / ~ ,  with the relaxation time associated to elastic 
forces I(p/~p. 

Following the same line of reasoning as in the analysis of the centre of mass 
motion, we can obtain the velocity correlation function for the p-mode 

"-. =, 3kBT  
< X p ( t p ) .  Xp(0) >-~ - - -  ¢p(tp) (3.30) 

where use has been made of the law of equipartition of energy 

"-. "~ 3kBT  
< Xp(0) .Xp(0)  > =  N ~  (3.31) 

and we have neglected the inertia of the polymer mass, as before. Notice that  the 
elastic force does not appear in our result (3.30) because, in view of the value of 
c~p, we have considered that  the configuration of the polymer remains frozen in the 
time in which the velocity correlation function takes significant values. 

According to eq. (3.14), in the short-time limit the velocity correlation func- 
tion behaves as t -1/2 while, in the long-time limit, one gets a decay t -5/2 for this 
quantity. We then conclude that  in the long-time limit, the behaviour of this cor- 
relation function is the same as the one for the rotational motion of a Brownian 
particle [31]. 

Concerning the correlation function < 3~p(tp)- )~p(0) >, one should realize that 
the time-scales in which the configuration of the polymer changes appreciably are 
governed by the elastic forces. This means that  the effects of the fluid enter only 
through the static quanti ty ~p giving the exponential behaviour [27] 

k u T  _~-at < 2p(t). 2p(o) > =  ,, (3.32) 

Up to now we have analyzed the dynamics of the Gaussian chain. When ex- 
cluded volume interactions are present, the study of the dynamics is much more 
complex. However, we can rather easily obtain qualitative information about the 
motion of the centre of mass of the chain, which is precisely the case where inertial 
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effects axe more important.  If we perform the equilibrium average of the mobility 
kernel and introduce the same approximation as we used in eq. (3.13), we can 
proceed as in the ideal case to get 

< Xo(t)Xo(O) > _~ ~o¢(o~)(t) < o(0 o(0) > 

#(~o)(t) ~ (3.33) 

where the superscript v refers to the fact that  the equilibrium average has been 
computed by using the equilibrium distribution function corresponding to the 
chain with excluded volume interactions. Now, by means of eqs. (2.16) and 
(3.15), interchanging the order of integration and averaging with respect to the 
equilibrium distribution function, we can see that  

/ [/o < (3.34) 

Here, the te rm between brackets is g(f~)/N where g(/~) is the static structure 
factor which, due to the isotropy of the system, is a function only of k -- Ifz I. After 
integration over the solid angle one gets 

.(o:)(t) ~ ]0~ ~k k ~ e-~k%(k)  (3.35) 

If RG "~ bN ~ (here u refers to the Flory exponent), scaling arguments lead us to 
g(k) ~ k -1/~ in the case kRc  >> 1 [27,31,32,33], while g(k) ,-~ 1 when kRG << 1. 
Introducing these expressions into eq. (3.35) we can finally arrive at the conclusion 
that  the decay of the centre of mass velocity correlation function is t -(3~-1)/2~ in the 
limit t << R2cp/TI, while in the limit t >> R~p/T] it behaves as t -3/2 as we expected. 
In the case of the ideal chain, the value of the Flory exponent is v = 1/2 which 
gives a short-time decay t -1/~ recovering the value obtained above. For the chain 
with excluded volume, the value of the exponent is approximately given by y = 3/5 
yielding a short-time decay t -2/3. These asymptotic decays ensure that  the centre 
of mass velocity correlation function is integrable in t ime which means that  the 
diffusion coefficient exists. 

3.2 D y n a m i c s  o f  a rigid rod 

As we have shown in subsection 2.2, the dynamics of the rigid rod is described by 
eq. (2.48). In this expression one should notice that  f~nt cannot be given in terms 
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of any potentiM energy as in the case of the flexible chain (cf. eq. 2.29). The 
existence of this force is related to the fact tha t  the length of the rod should be 
constant.  

To proceed, it is convenient to expand the variables of eq. (2.48) in terms of 
Legendre polynomials.  For an unspecified quant i ty  ¢(x) one has 

o o  

¢(x, t) = E @(t) Pt(x) (3.36) 
/=0 

where x = 2s/L, Pl(x) is the Legendre polynomial  of order l and 

@ = P-1 dx ¢(x)P~(x) (3.37) 

If we expand f-~'t(x, t) and feXt(x, t) in eq. (2.48), mult iplying both  sides of this 
equation by Pt(x) and integrating over x, we finally get 

L 
g(t) = #~(t)./~ + E ~,q 7 

q=0 

where use has been made  of the orthogonali ty proper ty  of the Legendre polyno- 
mials. In this last equation we have defined the mobili ty m a t r i c e s  ~lq 

~,q ~ f~_l 1 dx dx' Pt(x) ~(x - x') Pq(X') (3.39) 

Moreover, the random term gR(t) has zero mean  and satisfies 

< gR(t)g~(t') > =  2kBT~lq~(t- t') (3.40) 

as follows from eqs. (2.45) and (2.46). Notice tha t  for symmet ry  reasons the 
matrices ~lq axe different from zero only if I and q are bo th  even or odd. 

Since #(s, t) = ff~(t)+sg, we can easily compute  #o = v~/~ and #1 = L~ ~ g with 

#q = 0 for q > 2. Deriving #(s,t) with respect to t ime we simply have • = v~/~ 
and pq = L / v ~ g  = L/v/-d5 x g, where ~7 is the angular  velocity. Equat ion  (3.38) 
then gives 
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L [f~,t( t)+ fo~t(t) ] + ~R (3.41) "Yo(t) = Zo(t) . ~ + ~oo " ~ Vo 

- L + v ,  p~(t) = ill(t)" ~ + /7,, " -~ " .R (3.42) 

in which, to obtain the values of diffusion coefficients, we have only considered 
contributions due to the matrices/~oo and/711- These matrices can be computed 
by means of eqs. (2.43) and (3.39). One then obtains 

= - 1 { 2 [ l n L + 2 1 n 2 _ 3 / 2 ] g g + [ l n L + 2 1 n 2 _ 1 / 2 ] ( ~  gs)}  
tz°° 2~/L 

(3.43) - l{[ a ] ] } 
/711 - 2 ~ L  2 In + 2 1 n 2 - 1 7 / 6  ~ +  l n ~ + 2 1 n 2 - 1 1 / 6  ({-~g) 

(3.44) 

In eq. (3.41), ~nt vanishes due to the action-reaction principle. Moreover, j~nt has 
only longitudinal contributions and, as a consequence, will not affect rotational 
motions. The random terms Vo R and v 1 are not correlated since/701 10 = 0. 

Let us analyze first of all, the translational diffusion of the rod in the absence 

of flow (~ = 0) and of external fields ( f ~ t  = 0). In this case, eq. (3.41) simply 
gives 

f io(t)=gRo(t)  (3.45) 

Consequently, one obtains for the centre of mass velocity correlation function 

• . .. , goR(t)goR(t ') 2 k B T ~ o o 6 ( t -  < po(t)po(t ) > = <  > =  t') (3.46) 

In the isotropic case, the diffusion coefficient is given by the Green-Kubo formula 

o o  

DG = -~ fo dt' < J~(t) •/~(t') > (3.47) 

Using the relation ~o = v~/~ and eqs. (3.43) and (3.46), one finally gets 
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Da - 37ryL ~aa + 2 In 2 - 1 (3.48) 

which agrees with the result obtained by Yamakawa et al. [34]. 

We can now proceed to the calculation of the rotat ional  diffusion coefficient Dr 

for a rigid rod in equilibrium. S e t t i n g / ~ =  0 and f ~ t  = 0 in eq. (3.42) we get 

~(t) x g(t)= ~-]~11"--f  'ntlt~ 2 1 t ] + ~lR(t) (3.49) 

where use has been made of the fact tha t  g = a7 × g. Now we mult iply vectorially 
both  sides of this last equation by g(t). If we take into account that  f~,t is parallel 
to g, we get 

L 
v ~ g  x (~ x g ) =  g × gl n (3.50) 

This equat ion reduces to 

v/6^ ~a (3.51) 

provided tha t  we have neglected rotat ions around g-axis. Therefore, the angular 
velocity correlation function is 

6kB-----~T[ lnL 6] < ~(t)~(t') > =  ~ L 3  2aa + 21n2 - 5(t- t')(~- gg) (3.52) 

where use has been made  of eq. (3.40) and eq. (3.44). The  rotat ional  diffusion 
coefficient then follows from the corresponding Green-Kubo formula, yielding 

3kBT [lnL+ 21n2- 6] 1 fo ~dt < ~ ( t ) . ~ ( 0 )  > =  ~r~L 3 Dr - 2 

also in agreement with Yama~wa ' s  results [35,36]. 

(3.53) 
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In this paper we have presented a new formalism, which includes retardation effects 
in the fluid, to study the dynamics of polymers in solution. Our approach is based 
on the method of induced forces [18,19]. The method accounts for the perturbation 
introduced by the presence of the chain by considering induced force fields in the 
Navier-Stokes equation. We have been able to derive equations of motion of the 
polymer in a rather general situation: presence of time-dependent hydrodynamic 
interactions and of excluded volume effects. Our theory permits, in a systematic 
way, to obtain the mobility matrix and to prove the validity of the fluctuation- 
dissipation theorem for the Langevin forces. Moreover, its applicability ranges 
from flexible to rigid chains. 

The dynamics of the polymers then follows from the equation of motion we 
have obtained. In fact, for flexible chains we have analyzed the motion of the 
centre of mass and the conformational changes of the polymer. We have found 
that the centre of mass velocity correlation function exhibits a t -3/2 long-time tail 
identical to the one encountered for rigid spheres. Furthermore, the mean-square 
displacement shows corrections to the diffusion regime described by the Zimm 
model. Concerning conformational changes, the velocity correlation function for 
the different modes contributing to these changes decays as t -5/2, showing a close 
analogy with the decay of the angular velocity correlation function of a Brown- 
ian particle. The retardation effects in the fluid on the dynamics of the normal 
coordinates are not very important.  The dynamics is dominated by the elastic 
forces. For rigid rods; our formalism enables us to obtain the mobility kernel and 
from it, the diffusion coefficients given by Green-Kubo formulae without explicitly 
constructing the velocity field. This makes our analysis somewhat simpler than 
the analysis of Yamakawa who obtains the same formulae. 
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MESOSCOPIC DYNAMICS AND THERMODYNAMICS: 
APPLICATIONS TO POLYMERIC FLUIDS 

Miroslav Grmela 
l~cole Polytechnique de Montreal 

Montreal, H3C 3A7, Canada 

1 Introduct ion  

In the course of polymer processing operations (e.g. injection molding) a polymer melt 
(complex viscoelastic fluid) flows and simultaneously undergoes phase transitions. Modeling 
of the processing operations requires thus understanding of both thermodynamic and flow 
(rheological) properties. The interplay of these two types of properties is put into focus in 
this lecture. Thermodynamics and rheology have arisen independently of each other, their 
traditional formulations are therefore not well suited for such discussions. A novel and unified 
formulation of thermodynamics and dynamics is introduced in this lecture. 

The lecture is organized as follows. In Section 2 we note that understanding of the flow 
and the thermodynamic behaviour of complex fluids requires several levels of description. 
Thermodynamics on any level of description is introduced in Section 3 as a geometry of 
the state space. The physical foundation of thermodynamics is provided by an analysis of 
dynamics introduced on a more microscopic level of description (Section 4). Section 5 is 
devoted to applications in the context of polymeric fluids. The theory is adapted to driven 
systems in Section 6. 

2 Hierarchy of descriptions 

A rheological investigation begins with the identification of physical systems under consider- 
ation, our interests in them, objectives and intended applications. These considerations lead 
then to the choice of observations (i.e. to the choice of our interactions with the systems). 
The second stage of the investigations consists of a search for a model that  would summarize 
and explain the experience collected in the course of making the observations. Modeling 
starts with the choice of the state space. Elements of the state space (called state variables) 
are the quantities that  are chosen to characterize states of the systems. It is useful to keep 
the state space as small as possible because in general, smaller is the state space simpler 
is the model. The simplicity is then essential for satisfying our expectations placed on the 
model. Two complementary situations can arise. Either there exists a single simple model 
(i.e. the model whose state space is composed of the state variables that  are closely related 
to results of the chosen observations) or no such single model exists. The first situation arises 
for example if the chosen physical systems are simple fluids (e.g. water) and the interests are 
those arising in engineering practice. The single simple model that  satisfies all our needs is in 
this case hydrodynamics. The second situation is more typical. It arises for example if either 
the class of system is enlarged to include also complex fluids (e.g. egg white or industrial 
polymer melts) and/or  our curiosity increases (e.g. some more microscopic characteristics like 
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for example results of the slow neutron scattering are observed). If the second situation arises 
a single model has to be replaced by a family of mutually interrelated models introduced on 
different levels of description. Every model in the family is relatively simple but it satisfies 
our needs only partially. In this section we begin a systematic study of a multilevel family of 
models by introducing their state spaces. 

2 . 1  M a t h e m a t i c a l  f o r m u l a t i o n  

Let the state space introduced on the i-th level of description be denoted by the symbol Mi, 
its elements by u~ (i.e. u~ E M~). Let us consider now two state spaces: Mi introduced 
on the i-th level of description and Mj introduced on the j - th  level of description. If Mi 
and Mj can be related by constructing a bundle • (MI ,M¢,  II i) ,  where Mi is the total space, 
M s is the base space and II~ : Mi ~ M s is the bundle projection, then we say that M~ is 
more microscopic (less macroscopic) than M~.. From the physical point of view, the fact that 
Mi projects on M s signifies that tti E M~ represents a more detailed information about the 
system under consideration than u¢ E Mj. The space Me and the projection mapping II~. 
can be regarded as an additional structure (playing the similar role as an introduction of 
coordinates) introduced in M~. By presenting M~ as the bundle (M~, M¢, II~.) the space Mi 
is divided into the base space M¢ and the associated fibres {(II})-~uS]u¢ E Mj}. We shall 
use the notation: ttl ~- (uj., v~.), where u¢ E Mj and v¢ E (II~.)-~us. The notation convention 
that  will be used in the rest of this lecture will be that if i > j then Mi is more microscopic 
than M i (i.e. there exists a bundle (M~, Mi, II~.)). All the state spaces considered in this 
lecture will be linear spaces, the pairing in these linear spaces will be denoted by the symbol 
<, >. The organization of the state spaces into bundles will be found to be very useful in 
the subsequent analysis. In the rest of this section we shall illustrate the bundles on a few 
examples. For the introduction of bundles in the geometrical context see Refs. [1], [2]. 

2 . 2  E x a m p l e s  

The most macroscopic state space introduced in classical equilibrium thermodynamics (we 
shall denote it by the symbol Mthl) is a subset of 1R 2. Its elements uthl are uthl = (e, n), where 
e is the energy per unit volume and rt is the number of moles also per unit volume (see Ref. 
[3]). An example of a more microscopic point of view in classical equilibrium thermodynamics 
is to regard the system under consideration as an N-component system. This means that  in 
this case we have in our disposition more detailed measurements that  are able to distinguish 
in the system N different components. The state space MthN C ]RN+I; uthN = (e, n l , . . . ,  n~v), 
where nl is the number of moles per unit volume of i-th component. We can construct a bundle 
(M~ M, II thN~ with rtthN : ]RN+I ,hN, ,h, J ",hx m s, . . . .  , . N )  = + + . . .  + 
Another example of a more microscopic state space that has been introduced in classical 
equilibrium thermodynamics is Mth,. The systems under consideration are in this case elastic 
solids (see Refs. [3], [4]), ttth, m (e, n, m), where m, the strain tensor, is a traceless symmetric 
tensor that has the physical meaning of the measure of deformation. We can again construct 

'M, M, II 'h°' with rfth, given by (e, n, m) ~ (e, rt). a bundle t ta°, the, thlJ ~,thl 

The state space introduced in the Boltzmann kinetic theory [5] will be denoted by the sym- 
bol Mktl .  Its elements are one particle distribution function .fktl(r, v), r is the position vector 
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and v the velocity of one particle. All particles composing the system under consideration 
are assumed to be identical and without internal degrees of freedom. In the case of systems 
composed of macromolecules, the distribution function f~ktl (rl, v l , . . . ,  rN, vN) can be chosen 
to replace fkt (r, v); (ri, vi) denotes the position and velocity o f / - t h  link in a chain represent- 
ing one macromolecule. The projection operators --thlrrktl in the bundle (Mktl, Mthl, rt~tl~ ~ t h l )  c a n  be 

specified for example as: n = 1 f dSr f dSvfktl(r,v) and e =  i f dsr f d3vlmv'flax(rv)+ 

-~/dSr/dSv,(fil l;,),where V is the volume of the space region in which the system un- 

der consideration is confined, m is the mass of one particle and e is the intermolecular 
potential energy. Similarly, we can suggest the projection operation rr2vktl in the bundle JLthl 

N k t l  (MNktl,Mth,,IIth 1 ) (see e.g. Refs. [6], [7], [8]). 

In hydrodynamics, states of fluids are described by five hydrodynamic fields p(r), e(r), u(r), 
denoting the mass density, the energy density and the momemtum density. The bundle 
( Mhltd, Mthl , ~'thlY[hyd~l is  specified by 

l f 3  I f  n = -fff d rp(r), e =  3reCr), 

M ktx the bundle (Mktl, hvd, IIhvd) by 

p(r) = m ~ f davfktl(r, v), u(r) = m f d3vvfktl(r, v) 

and 

e(r)= f dS~mv~fhtx(r,r)+ f dsve(fktl, r). 

We note that  another candidate for the projection rrktl could be: .t thy d 

o(r) = mf dsr' f 

and similarly for u(r) and e(r), where O(r,¢) is a given function. If O(r,d) ~ &(r - r n) then 
the space localization in kinetic theory and hydrodynamics are identical [rTt~tl reduces in this ka~kyd 
case to the projection rrktl introduced above as the first candidate). If 0(r, ¢) is different a*hyd 
from 5(r - P) then the space localization on the two levels of description, namely kinetic 
theory and hydrodynamics, are note the same. 

Other examples of state spaces and bundles constructed out of them will be introduced 
in subsequent sections. 

3 T h e r m o d y n a m i c s  - G e o m e t r y  o f  t h e  s t a t e  s p a c e  

We shall divide all physical systems into two groups. The first group is composed of the 
physical systems that  are under the influence of external forces (these systems are called 
driven or externally forced). The physical systems in the second group are under no such 
external influence (they will be called nondriven or unforced). We note that  we could always 
transform driven systems into nondriven by enlarging them, namely by bringing the external 
influence into the interior of the systems. This is however not useful since the division 
between external and internal is dictated by our interactions with the systems (that are in 
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turn determined by our interests in the systems). The external influence is usually controled 
seperately from the system of interest. In Sections 3-5, only nondriven systems will be 
considered. In Section 6 we shall show how the analysis introduced in Sections 3-5 has to be 
modified in order to be applicable also to driven systems. 

In this section we shall consider all nondriven systems but only after they have been 
specially prepared. The process of preparation consists of leaving the systems sufficiently 
long time without any disturbance. It will be only in Section 4 where we shall be in position 
to include the preparation process into the mathematical formulation. Our interests in the 
prepared nondriven systems will be determined by equilibrium thermodynamic measurements 
described in all textbooks of equilibrium thermodynamics. The experience acquired in the 
process of making the thermodynamic measurements shows that  results of the measurements 
are not independent. Leaving the explanation of this experience to Section 4, we shall here 
only describe it in mathematical terms. The leading idea is that a relation can be conveniently 
described by specifying a submanifold. 

3 . 1  M a t h e m a t i c a l  f o r m u l a t i o n  

We begin by considering only one component fluids and thus by considering the state space 
Mthl (see Section 2.2). Following Gibbs, we introduce three dimensional space with coordi- 
nates ( e , n , s ) ,  where s is the entropy per unit volume. Thermodynamics is specified by the 
fundamental thermodynamic relation s = s(e, n) (see Refs. [3], [9]). This relation can be 
represented geometrically as a two dimensional surface imbedded in the three dimensional 
space with coordinates ( e , n , s )  (i.e. the image of (e ,n)  ~-* ( e , n , s ( e , n ) ) .  Since the deriva- 
tives of s(e, n) with respect to e and n are quantities directly accessible by thermodynamic 

measurements (recall that  Os 1 and Os 0---e --- T 0"-n = - T '  where T and ~ are the temperature and 

the chemical potential respectively) a more complete geometrical representation of thermo- 
dynamics is obtained by making 1-jet extension of the graph of the function s = s(e, n) (see 
Refs. [2], [10]). By this we mean that we introduce a five dimensional space (we shall call it an 

augmented thermodynamic state space) with coordinates e, n, T '  T '  s . Thermodynamics 

is then represented by the image of the mapping (e ,n)  ~ e , n , - ~ e ( e , n ) , - ~ n ( e , n ) , s ( e , n )  . 

This two dimensional surface imbedded in the five dimensional extended thermodynamic state 
space will be called a Gibbs surface. The experience acquired while making thermodynamic 
measurements is now expressed as the statement that the results of these measurements lie on 
the Gibbs surface. The individual features of the physical systems are expressed in classical 
equilibrium thermodynamics in the Gibbs surface. The association between the Gibbs sur- 
faces and physical systems can be obtained, in the context of equilibrium thermodynamics, 
only by collecting results of thermodynamic measurements. A theoretical study of this asso- 
ciation requires more microscopic levels of description. For this reason and also because our 
interest is focussed on polymeric liquids that  can be effectively studied only on several levels of 
description (see Section 2) we turn now our attention to the formulation of thermodynamics 
on more microscopic levels of description. 

Before introducing thermodynamics in a general state space M,  we shall cast the for- 
mulation of equilibrium thermodynamics introduced in the preceeding paragraph into the 
geometrical language (for an exposition of the geometrical concepts see for example [1], [2]). 
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We note tha t  the augmented thermodynamic state space is in fact T*Mthl  x ]R (by T*Mthl  
we denote the cotangent bundle of Mth; T('~,,)Mthl is the cotangent space at tached to (e, n) E 

its coordinates are ( ~ , - ~ ) ;  s E JR). This space has the natural  contact structure M~hl , 
k . L  . t  / 

1 # 
defined by the one form w - ds - -~de + -~dn. The Gibbs surface is a Legendre submanifold 

of T*Mthl  × ]R (i.e. the surface on which the one form w equals zero). We shall denote it 
by the symbol £thl. Next, we note that  the coordinates e and n of Mthl  have a distinct 
physical meaning. This means that  the thermodynamic state space Mthl  has an additional 

t h l  structure tha t  we can express by Mthl  =-- ( M t h x , M e , I I ~ ) ,  where Me - {e[(e,n) C Mthl) C JR. 
We can introduce now a Legendre transformation (i.e. the transformation preserving the 

1 
contact  structure of T * M t h l ×  J R ) f o r  example by ~ e , n , - ~ , - - ~ , s )  

where P 1 - - ~  = - s  + -~e - IZT n '  P is the pressure. This Legendre transformation transforms 

the fundamental  thermodynamic relation s = s(e,  n) into its dual (Gibbs-Duhem) form P = 
P(# ,  T). We can also formulate this Legendre transformation as follows: first we introduce 
~ t ~  T*M~h~ --* ]R (we shall call this function a thermodynamic potential; the reason for t h l  : 

choosing the particular notat ion will become clear later in this section) by 

,h, e, -- ----- ~ n .  (1) 

Second, we look for solutions of 
t~r~thl r ~ t h l  

=thl  ~ ~ t h l  = 0 ,  - 0 .  (2 )  
Oe On 

Solution of eq. (2) will be denoted by [U~h~]~hl and called thermodynamic  states. Third, we 
P 

evaluate the thermodynamic  potential -~n~/~ at thermodynamic states and equate it with - ~ ,  

i .e. 
1 # P 

Equation (3) is the Gibbs-Duhem form P = P ( p ,  T)  of the fundamental  thermodynamic re- 
lation s --- s(e ,  n) .  Finally, we recall that  a Legendre transformation transforms one Legendre 
submanifold into another Legendre submanifold. 

Now we introduce thermodynamics in a general state space M.  Thermodynamics  in M is 
specified by specifying a Legendre submanifold in T * M  × JR. The coordinates in T * M  × ]I~ will 
be ( u , p , s ) ,  u E M ,  p E T,~M, s E JR. The fundamental  one form w that  defines the contact 
s tructure of T * M  x ]I~ is w -- ds - p d u .  Let now M - Mi  =- (Mi ,Mth l , I I~h l ) .  In accordance 
with the notat ion introduced in Section 2.1, the coordinates in T*MI × ]I~ will be denoted 
by ui - (uthl, vthl),  uthl E M, hl, (i.e. u,hl ------ (e,n)), Vthl E (II[hl)-lUthl,  pi ---- (Pthl,qoa),  

- ~ , - - ~  -~ Pthl E T~th 1 thl, qthl E T,~,hl ~ thiJ thl, s E ]1~. The Legendre transformation 

corresponding to the Legendre transformation introduced in the preceeding paragraph is: 
(Uthl, Vthl, Pthl, qthl, 8) ~-+ (Pthl, qthl, Uthl, Vthl, --sd- < Pthl, Uthl > d- < qthl, Vthl > ) .  We shall 
again introduce the thermodynamic potential ~i -- T ' M / - +  ]R by 

= < p , , u ,  > 

= < p , , , ,  > (4 )  

+ < q,h~, (rt~h~)-l~thl > .  
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Moreover, we introduce 

C kd~ ,p ,~ l )  

Solutions of 

dey i 
_- • (~,,p, llq,,l=0 Cs) 
= - s ( u 3 +  < Pth~,II~hlU~ > .  

O@~hl 
o u ,  - o (6) 

will be called again thermodynamic states and they will be denoted by the symbol [u~]thx. If 
u~ is a function (for example a distribution function) then the derivative in (6) is the Volterra 
functional derivative. We shall not use any special symbol to distinguish the standard partial 
derivative and the Volterra functional derivative. Finally, we introduce 

P 
~ h l  ([Ul]th, Pthl) de f=  ~thl : - -  ~ ,  (7) 

that corresponds to eq. (3), and introduces the fundamental thermodynamic relation P = 
P(#,  T) that is implied in Mthl by the fundamental thermodynamic relation s : s(u~) intro- 
duced in Mi. 

3 .2  E x a m p l e s  

' f  f The Boltzmann entropy [51 s -- - V  asr dSvfktx(r'v)lnfktl(r,v) provides a classical ex- 

ample of the fundamental thermodynamic relation in Mux. It is easy to verify that if we 
follow the analysis described in eqs. (4)-(7) with tM M, H k'l~ ktl, thl, thl/ given in Section 2.2 (we 
consider only the particular case in which the interparticle potential energy e(fktl; r) - 0) 
then eq. (7) becomes the thermodynamic relation P = P(Iz, T) characterizing in classical 
equilibrium thermodynamics the ideal gas. 

example of the fundamental thermodynamic relation in Mnud i s : s  = 1 f dSrs(e(r),p(r)), An 

where s is the same function, pointwise for all r, as s(e, n) introduced in Mthl. This ther- 
modynamic relation arises when we assume that the system under consideration is locally at 
equilibrium (the hypothesis of local equilibrium). It is easy to verify that eq. (7) is in this 
case the Gibbs-Duhem form of s = s(e, n). 

Gibbs equilibrium statistical mechanics [11]-[14] can also be cast into the form of eqs. 
(4)-(7). In this case the elements of the state space are 

- (~0, ~1(=1) ,  ~,C=1, = , ) , . . . ,  ~ . ( ~ 1  . . . .  , ~, ) , . . . ) ,  ~, = (r, ,  ~,), 
u,~ is the probability distribution of m isolated particles, u0, u l , . . . ,  u , , . . ,  are normalized, 

i.e. uo + ~.. u ,dx l , . . ,  dxn = 1. The projection on Mthl is introduced by 
n=l 

~Inf f , .. h,,.xl, 1 ., x,)u,~dxl..,  dx,,  n = ~.. u , d x l , . . . ,  d x , ,  e = 
n----1 ---- " 

hn is the n-partlcle Hamiltonian. The fundamental thermodynamic relation is: 

s = - ~.v u ,~lnu.dxl . . .dx . .  
n=l 

Other examples will be introduced in Section 5. 
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3 .3  R e m a r k s ,  r e f e r e n c e s  

We have already mentioned that the association between physical systems and fundamental 
thermodynamic relations in M t h l  (or equivalently Gibbs surfaces L~hl) can be found, in the 
context of classical equilibrium thermodynamics, only by fitting results of observations. We 
have seen however that  we can obtain fundamental thermodynamic relations in M t h l  also 
from fundamental thermodynamic relations formulated on a more microscopic level Mi (see 
eqs. (4)-(7)). The physical insight is expressed in Mi in the function s - -  s ( u , }  and in 
the projection mapping II~h 1. On the most microscopic level of description, namely in the 
context of the Gibbs equilibrium statistical mechanics - see Section 3.2 - ,  the fundamental 
thermodynamic relation s = s (u~)  is universal for all systems. The individual features of the 
systems are expressed only in e = e(u~) (i.e. in the specification of the forces among the 
particles composing the system under consideration). On a mesoscopic level of description, 
the relation s - -  s ( u i )  can either be suggested by interpreting s as a measure of an order 
(information) [15] or as an approximation of the entropy arising in the Gibbs theory. 

The geometrical formulation of classical equilibrium thermodynamics presented in Section 
3.1 has been suggested in Refs. [16]-[18], [10]. The extension of this point of view to general 
state spaces is new [19]. Implicitely however, this point of view has been routinely used in 
equilibrium statistical mechanics (see Refs. [12]-[14]). The unification of the structure of 
equilibrium thermodynamics and equilibrium statistical mechanics achieved in Section 3.1 
is essential for introducing the multilevel point of view. The usefulness of the geometrical 
formulation will also be demonstrated in Section 6 where thermodynamics of unforced systems 
is extended to thermodynamics of driven systems. 

4 D y n a m i c s -  Phys ica l  foundat ion  of t h e r m o d y n a m i c s  

Now we turn our attention to the time evolution in the state space Mi (in other words to the 
introduction of a vector field on M;). We begin by listing some examples. If M; -- Mthl then 
the time evolution equations are particularly simple, 

(.,h,), =o ,  (8) 

the symbol ( )t denotes the time derivative. Equation(S) represents the conservation of the 
total mass and the total energy. If the elements of the state space M are position vectors 
(denoted by q) and momentum (denoted by p) of all particles composing the system under 
consideration then the time evolution is governed by Hamilton's equations 

P t O h  ' 
Co) 

0 1 / If M~ --- Mktl then the time evolution equation could be for example whe reL  c =  - 1  0 " 
/ 

the Boltzmann kinetic equation. An example of the time evolution equations in M h y d  a r e  the 
Navier-Stokes-Fourier hydrodynamic equations. 



106 

Our objective is to introduce a vector field on Mi such tha t  the trajectories (obtained 
by  solving the governing t ime evolution equation) will agree with the following results of 
observations: 

(i) the existence of the approach to thermodynamic  equilibrium states (the process of 
prepara t ion  of physical systems - see Section 3), 

(ii) equilibrium thermodynamics  describes the behaviour of the systems at thermodynamic  
equilibrium states. 

These observations are made on all levels of description. We can therefore expect tha t  there 
exists a universal s t ructure  of the vector fields tha t  guarantees the properties (i) and (ii) of 
the trajectories. 

In order to identify the s tructure we recall first some well known and well tested results. 
We begin with the result of Onsager and Casimir [20], [21], according to which the linear equa- 
tion governing the t ime evolution in a small neighborhood of a thermodynamic  equilibrium 
state  (defined as a solution of eq. (6)) is 

(10) 

where ~h: is the thermodynamic  potential  introduced in Section 3, L e is a skewadjoint 
linear operator  (called hereafter a linear Casimir operator)  and L ° is a linear selfadjoint and 
nonnegative operator  (called hereafter a linear Onsager operator) .  Equation (10) is a linear 

O~hl t ime evolution equation if ~ is linearized about  equilibrium states (i.e. about  states for 

which a¢~hl = 0). 
aui 

Now we are looking for a nonlinear extension of eq. (10). First, we focus our at tent ion on 
the second t e rm on the right hand side of eq. (10). In order to guarantee  that  the t ime evo- 
lution equation reproduces the experience (i) and (ii) mentioned above, the thermodynamic  
potential  &~hl has to play the role of the Lyapunov function. This means in part icular  tha t  

4' (11) (,~i), ~ o. 

If L ° --- 0 then eq. (10) implies tha t  (~h l ) t  = 0. We shall see later t ha t  this proper ty  will 
be kept also if the linear operator  L C is replaced by its nonlinear extension. We thus want 
to construct  L ° in such a way tha t  the inequality (11) holds. It  has been observed in Refs. 
[22]-[24] tha t  (11) is satisfied if 

O2A L°(P')- ap, ap,' (12) 

c9~hl , 
where M~* ~ p~ - and A : M~ ~ JR, called dissipative potential ,  satisfies the following 

Oul 
properties: A(O) = 0, A reaches a minimum at 0 and A is concave in a neighborhood of 0. 

Now we focus our at tent ion on the nonlinear extension of the first term on the right 
hand side of eq. (10). We recall tha t  the nondissipatlve par t  of the Bol tzmann kinetic 
equation [25], the Navier-Stokes-Fourier hydrodynamic equation [26] as well as the t ime 
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evolution equation (9) introduced on the most microscopic level of description prossesses 
the Hamiltonian structure. Following the general (noncanonical) formulation of Hamiltonian 
systems (see e.g. Refs [27], [1], [2D, that is most convenient in our multilevel analysis, a time 
evolution equation 

( u , ) , -  1, tu,) ~ (13) 

represents a Hamiltonian system if L c is a Poisson operator. This means that  if we introduce 
a bracket {A, B} by 

{A,B} = LC(ud)~u~ , (14) 

where A, B are sufficiently regular functions M~ -+ ~7~, then this bracket is a Poisson bracket, 
i.e. {A, B} = - { B ,  A} and {A, B} satisfies the Jacobi identity {A, {B, C}} + {B, {C, A}} + 
{C, {A, B}} = 0. We note that  if L ° is independent of u, (as it is in eq. (10)) then the 
skewadjointness of L ° itself guarantees that  (14) is a Poisson bracket. We also note that if 
the time evolution of u, is governed by eq. (13) then (@~hl), = 0. 

On the basis of the above considerations, we propose (see Refs. [27]-[30]) the following 
time evolution equation in the state space M¢ 

' ' 
• . o ,  ,OOthl  _ L 0 0@thl (15) 

= 1 ,  o,,,  ] a, , ,  ' 

where L ° is introduced in eq. (12), L c in eq. (13). In addition, we require that the operator 
L c and L ° are degenerate so that  no time evolution takes place in the base space, i.e. 

= 0 .  (16)  

It has been shown that many well known and well tested time evolution equations on many 
different levels of description (e.g. all well know kinetic equations and hydrodynamic equa- 
tions) can indeed be cast into the form of eq. (15) (see Refs. [28]-[38]). If eq. (15) is linearized 
about an equilibrium state then the linear Onsager-Casimir equation (10) is recovered. We 
suggest therefore to call eq. (15) a nonlinear Onsager-Casimir time evolution equation [10]. 

We end this subsection by a few remarks. 

R e m a r k  1 

Equation (15) together with the properties required from the operators L c and L ° implies 

(~hl), -< O. (17) 

This inequality is called a dissipation inequality. It guarantees that  the thermodynamic 
potential ~h l  plays the role of the Lyapunov function that  is associated with the approach 
(as t -4 oo) to thermodynamic equilibrium states. At the equilibrium states the behaviour 
of the system under consideration is then well described by the thermodynamic potential 
~h l .  This means that if we accept eq. (15) as a formulation of an experience arising in 
observing the time evolution on the level of description that  uses ~ri as the state space then the 
equilibrium thermodynamic experience formulated in equilibrium thermodynamics arises as a 
consequence. The nonlinear Onsager-Casimir time evolution equation provides thus a physical 
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foundat ion of equilibrium thermodynamics .  We recall tha t  equilibrium thermodynamics  is 
usually based on the experience with thermal  machines (i.e. on the experience tha t  belongs 
and is expressed entirely on the equilibrium thermodynamics  level of description) or on the 
experience serving as a basis of Gibbs equilibrium statistical mechanics (i.e. the experience 
tha t  belongs to the level of description on which classical or quan tum mechanics is formulated) 

R e m a r k  2 

In order to manifest  even more clearly the relationship of the vector field (15) with the 
geometrical formulation of thermodynamics  (see Section 3) we extend the vector field (15) 
introduced in Mi into a vector field in T ' M r  x IR (see Ref. [19]): 

OK 
(u,)t = 

0I~ pl OK 
(pi)t = Our pl Os 

(s)t = K -  Pl, , 

where K ,  called a contact  Hamiltonian,  is given by 

(18) 

K =  p,, ~ - p,, Op--7 .,=.:!~, - \  a~, /" (19) 

We make the following observations: 

(i) The  vector field (18) is a cononical formulation of a contact  vector field [1],[2]. This 
means tha t  the flow generated by the vector field (18) preserves the contact s t ructure 
of T ' M r  x IR. 

(ii) The  Legendre submanifold /'th of T*MI x ]R defined as the image of the imersion 

O~'thl i ur ~ ur, ur), Cthl(Ur is an invariant submanifold. This means tha t  the vector 

field (18) is tangent  to the Legendre submanifold/~th- Moreover, the vector field (18) 
restricted to Lth is identical with the vector field (15). We also note tha t  Klz,h = O. 
All s ta tements  made in this observation can be readily verified (we verify tha t  eq. 

= ( , h x ) , ) .  (18.1) I~,~ - eq. (15); eq. (18.2) I~,, -- k Our ) , ;  and eq. 18.3 I~,, ~ ,  

This observation permits  us to regard the vector field (18) as a lift of the nonlinear 
Onsager-Casimir  vector  field (15). We see tha t  the flow generated by the vector field 
(18) preserves the contact  s tructure (i.e. the fundamental  s t ructure of thermodynamics)  
and the manifold Lth (that specifies thermodynamics)  provides the s tate  space for the 
t ime evolution. 

(iii) If L ° -- 0 (i.e. if there is no dissipation) then the lift (18) from Mr to T*MI × IR is 
equivalent to the complete lift introduced in [39]. 

In order to give a simple illustration of the lift of the vector  field (15) into the vector 
field (18), we consider the one dimensional damped harmonic oscillator. We have thus 



109 

1 1 
O. The ( o 1 )  (oo) 

vector field (15)is now (,)t  = --1 0 ( : ) -  0 k (:)" The corresponding lift 

(18) is thus: 

K = kp ~ - k p z - p y + q x  ; ( z ) t = - 2 / c p + k z + u ;  
(y) ,  = - -x  ; ( p ) t = - k p + q  ; (q)t = - p  ; (s)t = - k p  ~. 

R e m a r k  3 

The nonlinear Onsager-Casimir time evolution equation (15) provides a unified formulation of 
dynamics of unforced systems on all levels of description. It serves us also as a formulation of 
the physical foundation of thermodynamics. In addition, eq. (15) can be used with advantage 
in two other ways. First, the mathematical structure of eq. (15) expressed in the properties 
of L c ,  L °, q~hl, allows to make some conclusions about its solutions. By recasting a known 
time evolution equation into the form (15) we reveal some properties of its solutions. This 
type of applications of eq. (15) has been introduced for the first time in the context of 
hydrodynamics by Arnold [40] (see also [27]). In the second type of application the time 
evolution equation of systems under consideration is not known. Equation (15) is then used 
to introduce it. This application of eq. (15) will be considered in detail in Section 5. 

4.1 Examples  

We shall introduce here only one illustrative example that is taken from kinetic theory. Some 
other examples will be shown in Section 5. Still many other examples have been worked out 
in [31], [25]-[37]. 

We shall introduce Mktl  and thermodynamics in Mkt ,  as in Section 2.2 and 3.2. The 
Poisson bracket in Mkt ,  has been introduced in [25], [27], 

OA O OB 

o( o. )o( o. )] 
" 

The dissipative potential generating the dissipative part of the Fokker-Planck equation is: 

k t l  k t l  

A=Ao 'ka fk . ( r ,v )]  ~ kOA,,(r,v)] 

where A0 E ~7~, A0 > 0, and the summation convention is used. It is now easy to verify that 
with these specifications eq. (15) becomes the Fokker-Planck kinetic equation. Other kinetic 
equations (e.g. the Boltzmann and the Enskog kinetic equations) have been cast into the 
form of eq. (15) in [31 I. 
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5 Rheological  model ing 

The principal objective of rheological modeling is to provide a setting that allows to organize 
and understand results of the chosen observations. By understanding we usually mean estab- 
lishing a bridge between microscopic (molecular) and macroscopic (flow and thermodynamic) 
properties of polymeric fluids. We shall describe briefly three modeling techniques. First, it 
is a technique that will be called an ideal modeling technique, second, it is the most widely 
used modeling technique (we shall call it Kirkwood's modeling technique) and third, it is a 
technique based on the nonlinear Onsager-Casimir time evolution equation (15) (we shall call 
it a thermodynamic modeling technique). 

5.1 Ideal modeling technique 

It is useful to begin the analysis of modeling by realizing what is the best that could be done 
while leaving the question of feasibility aside. The actual modeling techniques can be then 
judged by comparing them with this ideal. 

S t ep  1 

The starting point that we choose is quantum mechanics of all molecules composing the 
polymeric fluid under consideration. 

S t ep  2 

We solve the governing equations of quantum mechanics for all possible initial conditions and 
for a large class of boundary conditions corresponding to our actual macroscopic control over 
the polymeric fluid. We shall refer to the result as a phase portrait. 

S t ep  3 

We extract from the phase portrait a pattern that is pertinent to our macroscopic observa- 
tions. This step is thus essentially a pattern recognition process. 

S t ep  4 

Following now only the pertinent pattern in the phase portrait (i.e. forgetting all impertinent 
details) we obtain a simple macroscopic rheological model whose consequences agree with 
results of our observations. 
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5 . 2  K i r k w o o d ' s  m o d e l i n g  t e c h n i q u e  

Now we describe the basic steps in the modeling technique introduced by Kirkwood [6] (see 
also Ref. [7]). 

S t e p  1 

The starting microscopic (molecular) point of view is chosen. We shall denote the chosen 
state space by the symbol Ml(ul E Ms) and the time evolution equation (ul), = Rl(ul). 
The symbol R1 stands for the right hand side of the time evolution equation on the level of 
description denoted by the index 1. 

S t e p  2 

The level of description on which the model is formulated is chosen. We shall denote the 
state space corresponding to this level of description by the symbol M0. 

S t e p  3 

The projection II01 : M1 -4 M0 is suggested. 
introduced. 

In other words, the bundle (M~,Mo, II01) is 

S t e p  4 

The projection operator H0 x is applied on the time evolution equation (ul)t = Rl(ul). One 
obtains (uo)t = II~Rl(ul). In order to make this equation a time evolution equation in M0, 
the equation has to be closed. This means that  we have to express Us that  remains on the 
right hand side as a function of u0. We introduce thus an operator I ° : M0 --* M1 that we 
shall call a closure operator. It specifies an imbedding of the space of M0 in the larger space 
M1. It is obvious that  we shall require that H i o ~ = identity mapping in M0. 

By comparing this modeling technique with the ideal modeling technique we see that  both 
operators II~ and ~ should arise as a result of the pattern recognition process in the phase 
portrait. The choice of H01 can usually be justified, at least partially, by plausible physical 
arguments. There is however no clue offered in Kirkwood's modeling technique for choosing 
the closure mapping ~ .  It is in fact only the a posteriori analysis of the closed equation 
(comparison of its consequences with results of observations) that brings a justification for 
choosing ~ .  However succesfull has been the Kirkwood modeling technique in introducing 
many useful theological models (see Ref. [27]) it would be certainly useful to introduce another 
completely different modeling technique that  would complement the Kirkwood technique. 
Such modeling technique is introduced in the next subsection. 
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5 . 3  T h e r m o d y n a m i c  m o d e l i n g  t e c h n i q u e  

S t e p  1 

The level of description on which the model is formulated is chosen. We shall use again the 
symbol Mo to denote the state space introduced on the chosen level of description. Note that 
this step is exactly the same as Step 2 in Kirkwood's modeling technique. 

S t e p  2 

We assume that the time evolution equation in M0 is the nonlinear Onsager-Casimir time 
evolution equation (15). In order to specify this equation we need to specify three quantities, 
namely the thermodynamic potential ¢°hl , the Casimlr operator L v and the Onsager operator 
L °. These are the three basic building blocks of the theological model. It is in these blocks 
where we express (in the next steps) our physical insight into the polymeric fluid under 
consideration. 

S t e p  3 

Specification of the thermodynamic potential &°hs. This task has been discussed in Section 
3. 

S t e p  4 

Specification of the Casimir operator L C. From the physical point of view, this problem is 
the problem of identifying kinematics in the state space M0 (see more in the last paragraph 
in Section 5.4). 

S t e p  5 

Specification of the Onsager operator L ° (or equivalently - see eq. (12) - the dissipative 
potential A). There are three types of arguments that we can advance to approach this 
problem. First, it is the argument of simplicity. The quadratic dissipative potential A can 
be suggested as the first candidate. Second, we follow the Kirkwood technique, look at the 
projected equation (Uo)~ = II0~Rl(Ul) and try to suggest the operator L ° by trying to cast it 
into the form of eq. (15) with ¢°hl and L v already know from the two previous steps. The 
third type of arguments that can be used to specify L ° will be mentioned in Section 6. 

We end this subsection by listing advantages of the thermodynamic modeling technique. 

1. During the experimental investigation, experimentalists acquire an intuitive under- 
standing of the physics of the polymeric fluid under investigation. Such understanding 
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can be then easily expressed, by following the steps of the thermodynamic technique, 
in a theological model. A confrontation of the consequences of the model with results 
of observations represents a test of the understanding on the basis of which the model 
was formulated. This test can be then used to improve the understanding. It should 
be emphasized in particular that  the formulas exprssing the extra stress tensor as a 
function of the state variable u0 is obtained as a result if the thermodynamic modeling 
technique is followed. The ambiguities that  arise in the specification of these formulas 
in Kirkwood's modeling (reflecting the ambiguity in choosing the closure mapping - see 
an example in Ref. [41]) are thus avoided. 

2. We desire, of course, that consequences of the rheological models agree with results 
of observations. We recall that already the fact that the thermodynamic modeling 
technique is used to introduced the models guarantees agreement with one particular 
experience, namely the equilibrium thermodynamic experience. 

3. Rheological model constructed by following the thermodynamic modeling technique 
stay on their own. By this we mean that the arguments on which the models are based 
belong to the same level of description on which the model is formulated. There is 
no need of more microscopic levels of description to give the models a clear physical 
meaning. The advantage of this feature of modeling is well illustrated on the following 
example. It is well known that hydrodynamics can be founded physically in the state 
space Mhvd (local expression of global conservation laws). Let us suppose for a moment 
that this macroscopic foundation is not known to us and that  we are familiar only with 
the Boltzmann kinetic equation describing the time evolution of a rarefied gas on a 
more microscopic level of description, namely on the level of descirption that  uses Mktl 
as its state space. From the Boltzmann equation, by following the Kirkwood modeling 
technique (in this case it is the Chapman-Enskog method that  can be used to suggest 
the closure mapping), we arrive at hydrodynamic equations. We then conclude that hy- 
drodynamic equations describe well the asymptotic time evolution of rarefied gases. In 
reality, of course, hydrodynamic equations describe well the asymptotic time evolution 
of a much larger class of physical systems. We have no problem with this finding since 
we can provide an alternative physical foundation of hydrodynamic equations that  is 
based only on the physical insight associated with the hydrodynamic level of description 
and thus applicable to larger class of physical systems than rarefied gases. A similar 
situation arises in theological modeling. Many useful rheolngical models that  use Mc as 
its state space (see Section 5.4) can be introduced, by following Kirkwood's modeling 
technique, from the kinetic equations describing the time evolution of noninteracting 
dumbbells [7]. The resulting models formulated in Mc are then found to be good mod- 
eles also for a much larger class of polymeric fluids. An independent introduction of 
theological models in the state space Me, provided by the thermodynamic modeling 
technique, is thus very useful. 

4. If we place the thermodynamic modeling technique in the context of the Kirkwood 
modeling technique, we observe that the thermodynamic modeling technique offers in 
fact a way to suggest the closure mapping. First, we may use the requirement that  after 
closing the time evolution equation has the structure of the nonlinear Onsager-Casimir 
time evolution equation (15). The second agument leading to the closure mapping will 
be introduced in Section 6. 
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5 .4  : E x a m p l e s  

Since many examples of the application of the thermodynamic modeling technique to formu- 
late rheological models have already been published, we shall limit ourselves only to making 
a few remarks and listing the references. 

The choice of the state space M0 in Step 1 is always a compromise between completeness 
(the ability to express molecular details) and simplicity (the easiness of solving the governing 
equations of the model). In general, we have followed the experience collected in [6], [7] 
and used three state spaces M~, Mr and M,~. Elements of M~ are (p(r), e(r), u(r), ¢(r, R)), 
where p, e,u are elements of Maud (see Section 3.2) and ¢(r ,R),  the so called configuration 
space distribution function (R is the end-to-end vector of a macromolecule), satisfies the 

condition ] d3r ] dSv¢(r'R) = 1; ¢(r,R)d3rd3R is physically interpreted as normalization 

the probability that a macromolecule with the end-to-end vector in (R, R+dR) is found in the 
position (r, r + dr). Elements of Me are (p(r), e(r), u(r), e(r)), where again p, e, u are elements 
of Mhvd and e(r), called a conformation tensor, is a symmetric positive definite tensor that 
is physically interpreted as a measure of macromolecular deformations (a macromolecular 
strain tensor). By M,~ we denote the state space used in the Ericksen-Leslie theory of liquid 
crystals (see Refs. [471, [48], [35 l, [37]). 

The list of references is presented in the following table (the references with star, [ ]*, 
include experimental results and comparison of the experimental results with model predic- 
tions) 

Polymeric Fluid State Space Reference 

compressible, non-isothermal Me [33] 
Uo [41] 

polyelectrolytes Mr [42]* 

semiflexible macromolecules Me [43], [37] 
Mr [43t, [44], [45]* 

liquid crystals Me [43], [33], [37] 
Mr [341, [351, [37] 

M,~ [35] 

network of macromolecules Mr [46]* 

Finally, we shall make a remark concerning the statement that we made in Step 4 (i.e. 
the choice of the Casimir operator L C or equivalently the Poisson bracket). We have stated 
that L c represents a mathematical formulation of kinematics in M0. Let G be a Lie group 
of the fundamental kinematic transformations in Mo and g its corresponding Lie algebra. In 
hydrodynamics, G is the group of mappings ]R s -~ ]l~ 3, in kinetic theory, G is the group 
of canonical transformations ]l~ 6 -* ]R 6, (r, v) ~-~ (~, v~)). If we succeed to present the 
state space M0 as dual of the semidirect product of the Lie algebra g and a direct sum of 
vector spaces then the Poisson bracket arises naturally (see e.g. [49], [27]). For example, 
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the Lie algebra corresponding to the group of canonical transformations is the algebra of the 
generating functions of the canonical transformations. Its dual is the space whose elements 
are one particle distribution functions, thus the space Mktl. 

6 Thermodynamics  and dynamics  of driven systems 

Until now, we have considered only unforced systems. In this section, our attention will be 
turned to driven systems. We can think for example about the B~nard system ( a horizontal 
layer of fluid heated from below - the driving force in this example is the temperature gradient 
and the gravitational force) or a polymeric fluid subjected to a flow (the driving force in this 
example is the imposed flow). We begin by recalling some experience that  has been collected 
about driven systems. 

First, we note that driven systems do not approach thermodynamic equilibrium states. In 
fact, they, in general, do not even approach stationary states (recall the experience collected 
about the Bgnard system). Since the approach to thermodynamic equilibrium states was 
taken as a basis for introducing thermodynamics of unforced systems (Section 4), we have 
to look, in the context of driven systems, for other properties on the basis of which ther- 
modynamics could be introduced. Another observation that  points against the existence of 
thermodynamics of driven systems is that the organization in driven systems in many cases 
increases as the time evolution proceeds and not decreases as it is in the case of all unforced 
systems. To see this we can recall again the familiar behaviour of the B~nard system. There 
are however also observations indicating that a simple modification of the free energy can be 
used to explain certain behaviour of driven systems. For example the experimental observa- 
tions and the theoretical analysis of solubility of polymer solutions subjected to a flow (see 
Refs. [50]-[53 D are of this nature. 

The observation on which we shall base the analysis of driven systems presented below is 
that  the time evolution of all (or at least many) driven systems is well described on a level of 
description that is not the most microscopic one. We shall denote the state space used on this 
level of description by the symbol M0. From this observation we conclude that if we describe 
the time evolution of the driven system under consideration in a state space M1 that is more 
microscopic than M0 then this more microscopic description will approach (as t -* co) the 
description in M0. For example, it is well known that  the behaviour of the B~nard system 
is well described by hydrodynamic equations (Boussinesq equations). If we thus describe the 
time evolution of this system on, say, kinetic theory level, i.e. in Mktl, then this description 
will approach, as t ~ c~, the hydrodynamic description. Similarly, in the context of polymeric 
fluids subjected to a flow, observations seem to indicate that their behaviour is well described 
in Me. If we thus formulate the time evolution in Me, we can expect that  this description will 
approach (as t ~ ~ )  the description in Me. Thermodynamics of unforced systems has been 
based (Section 4) on the observed existence of the approach to thermodynamic equilibrium 
states or equivalently on the approach to equilibrium thermodynamics level of description. We 
suggest to base thermodynamics of driven systems on the observed existence of the approach 
to a more macroscopic (but still involving time evolution) level of description. In order to 
prepare the analysis of driven systems (Section 6.2), we shall consider first the approach to a 
more macroscopic (but still involving the time evolution) level of description in the context 
of unforced systems (Section 6.1). 
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6 .1  A p p r o a c h  o f  t h e  t i m e  e v o l u t i o n  in  M1 to  t h e  t i m e  e v o l u t i o n  in  
a m o r e  m a c r o s c o p i c  s t a t e  s p a c e  M0: n o n d r l v e n  s y s t e m s  

In this subsection, we shall still consider nondriven systems. In Sections 3 and 4, we have 
based our analysis on the comparison of descriptions in M~ and Mthx. In this subsection, 
we shall compare three levels of description, namely M,  Mj j < i and Mthl. For example: 
M~ - Mthx, M i ~- Mhyd or Mi - M~ and Mj - M~. We shall assume that  the three 
bundles (Mi, Mthl, Ilth:),i (Mj, Mthl, ilthl ) i  and (Mi, Mj, II~) are know. By following Sections 
3 and 4, the first two bundles can serve us to introduce the time evolution expressing the 
approach to the equilibrium thermodynamic description (we shall denote it symbolically by 
M~tT__.°°Mthx and MitT_°°Mthl) and the corresponding thermodynamics. We shall now try 
to extend the analysis introduced in Sections 3 and 4 so that  it could also be applied to 
the approach MitT_°°Mi. In this way we then also expect to introduce the corresponding 
thermodynamics. The generality of the mathematical formulation introduced in Sections 3 
and 4 will be particularly useful. 

First, we turn our attention to the extension of thermodynamics by replacing in Section 3 
the bundle (M~, Mthl, II~hl) by the bundle (M~, Mi, II$.). The notation introduced in Section 
2.1 will be used: tq = (ui, vs) , v i E (II~.)-lui. In addition, Pi E Y~Mi, Pi E T*iM i, p~ - (Pi, qi), 
qi E T~jv i. The thermodynamic potential (4) is now 

¢'C,,,,p,) = - s ( u i ) +  < p,,tt~ > 

= - , (= , )+ < p;,II}=, > 
-4- < qj, (IIj.)-ltti > .  

(20) 

We introduce also (see eq. (5)) 

¢~(",,pi) 

Solutions of 

~'f: ¢'C.,,p,)iqi-o (21) 
= - s ( . ~ ) +  < pi, I I~ ,  > .  

c9¢~ = 0 (22) 
auj 

will be denoted [ul]j and called thermodynamic states. Finally, we introduce 

The equation E = E(pj) is the fundamental thermodynamic relation in M s implied by the 
fundamental thermodynamic relation s = s(u~) in Mi. 

Now we turn our attention to the time evolution, Let 

denote symbolically the equation that governs the time evolution in Mi, and 

(~i), = R;(~i) (2s) 

the equation that  governs the time evolution in My. In Section 4, we have considered the 
case Mi  - Mth, ,  eq. (2S) = eq. (8) and  eq. (15) has been  in t roduced  as a re formula t ion  
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of eq. (24) in which the approach to [ul]th is manifestly displayed. Now, if M i ~ Mthl, we 
look for a reformulation of eq. (24) which will manifestly display the approach to the time 
evolution governed by eq. (25). In other words, we want to formulate the time evolution in 
M~ (governed by eq. (24)) as a two step evolution. The first step is the "fast" approach to 
the time evolution in Mj (governed by eq. (25)) and then the "slow" evolution governed by 
eq. (25). In the case of Mj - Mthl the "slow" dynamics is the slowest possible which means, 
of course, that the dynamics in Mthl is absent. It seems natural (see [54], [55]) to suggest 
that the straighforward modification of eq. (15) obtained by replacing Mthl by Mi, namely 

( . , ) ,  = t u , j - -  - (26) 
aui ~, aui ] au~ 

= 0, (27) 

will govern the first step, i.e. the "fast", time evolution. Equations (26), (27) describe the 
approach of ul to [u~]y that is then governed by eq. (25). Note that the thermodynamic 
potential (~j. plays now the role of the Lyapunov functional associated with this approach. 

As in Section 4, we can apply eqs. (25)-(27) in two ways. First, we take eq. (24) as 
known. Equations (25)-(27) represent then in fact a recasting eq. (24) into a form revealing 
the properties of its solutions that are of our particular interest. We recall that in Section 
4 this application has been illustrated by the example: eq. (24) ~ Fokker-Planck kinetic 
equation (for other illustrations see [31]). In the context of eq. (24) versus eqs. (25)-(27), we 
have no example in which eqs. (25)-(27) would be strictly equivalent to a given equation (24). 
Some examples in which solutions of eqs. (25)-(27) can be regarded as a good approximation 
of eq. (24) will be introduced later. The second application of eqs. (25)-(27) follows the 
application of eq. (15) in Section 5. We assume that the time evolution in My (i.e. eq. (25)) 
is known. By using a physical insight (similar to the one used in Section 5) we then introduce 
L ¢, L ° and (I)~. appearing in eq. (26). Equation (25)-(27) are then regarded as a model of the 
time evolution in Mi. We shall discuss here only this second type of the application of eqs. 
(24)-(26). 

In the rest of this subsection, we shall discuss the process of expressing our physical 
understanding of the system under consideration in the thermodynamic potential (I)~. If we 
assume that the bundle projection II~ is known, we need only the fundamental thermodynamic 
relation s -- s(ui) (see eqs. (20), (21)) to specify (I)~.. We note that the relation s -- s(ul) 
introduced in the context of the study of the approach Mi t~_.°°M i will, in general, be different 
from the relation s = s (ul) introduced in the context of the study of the approach Mi t.~._.oo Mthl. 
This is because these two time evolutions are different and thus their corresponding Lyapunov 
functions are different. While studying the approach Mi~_~°°Mthl (Section 3-5) we could 
use the Gibbs equilibrium statistical mechanics to suggest the fundamental thermodynamic 
relation s = s(ul). How shall we proceed now when we consider the approach Mit~.,°°Mi? 
We suggest two types of arguments: 

(i) Let eqs. (24) and (25) as well as the bundle projection II~ be known. If we apply II~. 
on eq. (24) (compare with Step 4 in Kirkwood's modeling technique), we obtain 

(-i), = (2s) 

We shall now require that if we choose the closure by 

u, = [u,]i (29) 
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(ii) 

(i.e. we insert (29) into the right hand side of (28)), then eq. (28) will become equivalent 
to the known eq. (25). We thus look for ¢~ such that solutions of eq. (22) (i.e. the 
thermodynamic state [u,]i) are those that make eq. (28) equivalent to eq. (25). An 
illustration of this argument is introduced below. 

The second argument is inspired by Muschik's [56] analysis. The entropy that we are 
looking for is the entropy of the system that is constrained by II~.u~ = const. We shall 
denote it by the symbol [entropy] [constraint ]. If we now remove the constraint the 
system will reach the thermodynamic equilibrium state with entropy that we denote 
[entropy] [no constraint]" Following Muschik's arguments, we suggest 

entropy created ] 
[entr°pY]no constraint = [entr°PYlconstraint + when constraints (30) 

are removed 

We expect, of course, that the relations s = s(u~) obtained by following the argument (i) and 
(ii) will be the same. 

Now, we mention some examples. Let eq. (24) be the Boltzmann kinetic equation 
(i.e. M1 = M~tl) and eq. (25) the Navier-Stokes-Fourier hydrodynamic equations (i.e. 
Mo - -  Mhud) .  If we choose s = *(ul) as in Section 3.2 (i.e. the Boltzmann entropy) and 
construct ff~ktl ~hvd by following eqs. (20), (21) (the projection "'h~drrktl is introduced in Section 
2.2), then solution of eq. (22) (i.e. the thermodynamic state [Uktl]hvd) the well known lo- 
cal Maxwellian distribution function. It is also well known that if we introduce the local 
Maxwellian distribution into eq. (28) we obtain the Euler hydrodynamic equations and not 
the Navier-Stokes-Fourier hydrodynamic equations. But we know what is in this case the 
distribution function that, if inserted into eq. (28), implies the Navier-Stokes-Fourier equa- 
tions. It is, of course, the distribution function obtained as the first approximation in the 
Chapman-Enskog solution of the Boltzmann kinetic equation (Ref. [57]). We thus look for a 
modification of the Boltzmann entropy for which the solution of eq. (22) is this distribution 
function (see Ref. [55]). It can be shown that in this case the Muschik argument leads to the 
same result. 

As another example, we consider M1 - M¢, M0 - Mr, eqs. (24) and (25) are some of 
the equation introduced in Section 5. In this case, the distribution function that plays the 
role that is analogous to the role of the local Maxwellian distribution function in Boltzmann 
kinetic theory is the distribution function introduced in Refs. [58],[59]: 

¢(r ,  R) = (2r) -s/2 (det pCr, t)) x/2 exp(-R~p=~Cr, t )R,) ,  (31) 

where is thermodynamic dual of the tensor e. We shall mention this example also in Section 
6.2. 

6 . 2  A p p r o a c h  o f  t h e  t i m e  e v o l u t i o n  i n  MI  t o  t h e  t i m e  e v o l u t i o n  i n  

a m o r e  m a c r o s c o p i c  s t a t e  s p a c e :  d r i v e n  s y s t e m s  

The system under consideration is now a driven system. We follow Section 6.1 and consider a 
description in - ~  (we shall denote it -~1) and .~//j (we shall denote it M'0). We cannot describe 
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our system in Mthl since driven systems do not approach thermodynamic equilibrium states. 
The time evolution describing the approach M1 t~__.°°M0 will be considered in the same way as 
in Section 6.1. The fact that  the system is now driven enter our consideration in the bundle 
projection II~. (e.g. in the example of the B~nard system the gravitational energy will be a 
part  of the total energy) and in the second term on the right hand side of eq. (30). We shall 
illustrate the construction of the thermodynamic potential of driven systems on the following 
example. 

Let the system under consideration be a polymer solution (studied in Refs. [50]-[53]) 
subjected to a flow. Experimental results show that solubility depends on the imposed flow. 
Our objective is to use the discussion of thermodynamics of driven systems presented in 
this section to understand these experimental results. We shall only sketch this application. 
Details will be published elsewhere. 

We shall assume that  elements of the most macroscopic state space in which the system 
can be described are: Mo ~ uo -~ (n,(r),np(r),e(r), %(r)), where n, is the number  of moles 
per unit volume of the solvent, n~ is the number of moles per unit volume of the polymer, 
e is the internal energy per unit volume and cp is the conformation tensor characterizing 
states of the polymer macromolecules. Elements of the more microscopic state space M1 
will be chosen to be: M1 ~ ul - (no(r),np(r),e(r),¢p(r,R)), where n,,np, e have the same 
meaning as in u0 and ¢~ is configuration space distribution function describing states of the 
polymer macromolecules. The projection mapping II0 x is introduced by: (n,,np,e,¢p) 

np, e , f  d3RRRCp(r,R)). Following eqs. (20), (21), (30), the thermodynamic potential 

¢01 is introduced as: 

1 li.(r,t) t t . (r , t)  p . ( r , t ) ~ _  
,1~ Ul, T ( r , t ) ,  T(r,t) '  T ( r , t ) ' T ( r , t ) ]  

1 3 1 
+ V f + 4u,,'11 

1_ f d%tZ, Cr, t) l f d%,pCr, t) 
v J y l 

, 1 . . . . . . .  

( 3 2 )  

where p~ denotes the tensor that is the thermodynamic dual of the conformation tensor %. 
The quantities that remain unspecified in eq. (32) are e, SFH and S/lo,. We shall discuss 
them one after the other. 

The quantity e is the intra and inter molecular energy. It  depends on the state of the 
macromolecules (described by the state variable ui). Many examples of e can be found in the 
references listed in Section 5. 

The quantity SFH iS the Flory-Higgins entropy formulated in the state space M1. What 
we require is that ~o ~ corresponding to no imposed flow (i.e. Sfio~ - O) and p~ = 0 (we 

shall denote it (~ )0)  and evaluated at solutions of OCp = 0 becomes the well known Flory- 

Higgins free energy (see Refs. [50]-[53]). The explicit form of sFH(ul) will be published 
elsewhere. 
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The quantity sizo~ is the new term in the entropy (see the second term on the right hand 
side of eq. (30)) arising due to the imposed flow. In the particular case when T = const., 

1 OUa 1 OUa we suggest that Spo~ (ttl) : --T(I'I0(Ul))-~-~F aa/~(r[0(~l)) ,_,  where ~r~ is the imposed velocity 

gradient, r and a are respectively the relaxation time and the extra stress tensor introduced 
in the time evolution in M0. Explicit expression for these quantities can again be found in 
the references listed in Section 5. 

Following the procedure described in Section 6.1 we, first, look for solutions of ~ u l  -- 0. 

Solutions of this equation are denotes [ux]0. Let us assume, for the sake of simplicity, that 
~,,~tp and T are constants independent of r. Now, we insert lull0, that is a function of 

Ou (assumed to be a given function), into ¢01 and obtain #o,#p,pp and ~rr 

P = ~I,01 ([ux]0 ' ~u° #~,p,;Ou) 
- T T '  T Or (33) 

that we write finally as 

0 u )  (34) P = P T,#,,~p,pp;-~r " 

In addition to eq. (34) we have still the equation governing the time evolution of ep (i.e. eq. 
(25)) that we shall write formally as 

Ce,), = c ,  • C35) 

We note that eq. (35) can be obviously transformed into equation governing the time evolu- 
tion of the thermodynamic dual pp of %. Equation (34) is now the fundamental thermody- 

Ou 
namic relation of polymer solutions submitted to a flow (specified by ~rr) that replaces the 

fundamental thermodynamic relation 

P = P(T,#, ,#p) 

of polymer solutions subjected to no external flow. 

(36) 

Even at this state, i.e. before the quantities e, SF•, s/lo~ and Cp (see eqs. (32) and (35)) 
have been specified, we can draw from eqs. (32)-(36) interesting conclusions. 

1. If a polymer solution (a two component system) is subjected to no flow (no driving 
force) then 

(a) states are described in thermodynamics by (e, np, n,) - uth2 E Mth~ C k s, their 
time evolution is governed by 

(Ufh2) t -~ 0 

and 

(b) s = s(e, np, n,) or eq. (36) is the fundamental thermodynamic relation. 

If the flow is switched on then the above thermodynamic description generalizes as 
follows: 
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2. 

3. 

(a) states are described in thermodynamics by (e, np, n,%) -- uo E M0, their time 
evolution is governed by 

(Uo), = Q,(uo; f low) 

and 

(b) s = s(e, np, n°, ep; f low) is the fundamental thermodynamic relation. 

The generalization of thermodynamics consists thus in, first, generalizing the thermo- 
dynamics state space, and, second, in generalizing the fundamental thermodynamic 
relation. We note that the generalized thermodynamic state space M0 is in fact the 
thermodynamic state space used in thermodynamics of elastic solids (in Section 2.2 we 
have denote it by the symbol Mtho ~ uth,, ep is in this context replaced by the elastic 
deformation tensor that we have denoted by the symbol m). The fundamental thermo- 
dynamic relation depends now on the imposed flow and consists of two parts. First, it 
is the thermodynamic relation of the same type as it arises for example in thermody- 
namics of elastic bodies (the specific relation between the entropy and the rest of the 
variables will not, of course, be the same as in the context of elastic bodies). Second, 
it is an equation governing the time evolution of the thermodynamic variables. In the 
context of unforces systems, this equation reduces to the statement that the thermo- 
dynamic state variables do not evolve in time. The physical origin of the fundamental 
thermodynamic relation in both unforced and forced systems lies in the time evolution 
on a more microscopic level of description. 

The fundamental thermodynamic relation s = s(e, np, n,, %; flow); (u0)t = Cp(uo; flow) 
involves kinetic coefficients (like e.g. the viscosity coefficient, normal stress coefficients, 
etc.). This is because s introduced in M1 involves the term Slto~. The setting intro- 
duced above implies thus relations among the flow induced changes of thermodynamic 
properties (like solubility or specific heat) and temperature, pression, concentration 
dependence of kinetic coefficients. These relations become now a part of the usual 
Maxwell relations. 

It can be easily shown that if the imposed flow is considered as a small parameter then, 
in the lowest approximation, the type of results presented in Refs. [50]-[53], [60] is 
recovered. A detailed analysis will be published elsewhere. 

7 Concluding remarks 

The objective that we have pursued in this lecture is to increase the understanding of dynamics 
and thermodynamics so that the thermodynamic analysis could be applied to polymeric fluids 
in conditions that arise in polymer processing operations. Different routes leading to the same 
or similar objectives have been explored by other authors. We shall end this lecture by making 
a comment about the relationship between the approach presented in this lecture and the 
approaches known as irreversible thermodynamics (IT) (see Refs. [61], [62]) and extended 
irreversible thermodynamics (EIT)  (see Refs. [63]-[66]). 

While there is no limitation placed on the choice of the state space in the approach 
presented in this lecture, the choice of the state spaces in I T  and E I T  (denoted MIr  
and ME/r) is limited. The state variable ulr  E Mzr is either uhvd (see Section 2.2) or 
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u , r  =--- ( u l ( r ) , . . . , u , ( r ) ) ,  where u,(r), i = 1 , . . . , n  are fields (i.e. quantities depending on 
the position vector r). Elements of u m r  E MEIT are Umr -- (UXr, 6;r) ,  where UIT are time 
derivatives of the fields ux2-. From the physical point of view, the extension from ulr  to u m r  
is the extension that  allows to include inertia into the time evolution (recall the extension 
from the position vector r to (r, ÷) in classical mechanics). Instead of a i r  we can also in- 
troduce the fluxes (or a part  of the fluxes - e.g. the dissipative part) associated with the 
field Ulr. The particularity of MXT and M~xr limits the applicability of I T  and E I T  (for 
example in the context of polymeric fluids other state spaces as for example Me and Mkt, 
are very useful - see Section 5) but simplifies the problem of specifying the time evolution 
equations. If MIT -- Mhvd then ( I )~ is introduced usually be using the local equilibrium hy- 
pothesis (see Section 3.2) and the time evolution equations by requiring that  the inequality 
( T~, hy d,i ~th111 --< 0 holds and that  the linearized time evolution equations have the structure of the 
linear Onsager-Casimir equation (10). In E I T ,  the equations governing the time evolution 
ofulT are known (since the extra state variables u l r  have been chosen to be in a one-to-one 
relation with the right hand side of the time evolution equations for u1T). The equations 
governing the time evolution of the extra state variables flit are chosen so that  t ~ I T ~  < 0. 
The approach developed in E I T  represents thus a special case of the approach that  we have 
presented in Section 6. It has been shown in some particular case (see Refs. [36], [67]) that 
the nonlinear Onsager-Casimir time evolution equation (26) is a nonlinear extention of the 
time evolution equations introduced in E I T .  

The approach presented in this lecture can be thus regarded as an at tempt to extend 
E I T  to general state spaces and to fully nonlinear time evolution equations. The extension 
enlarges the domain of applicability of the theory and illuminates the underlying physics (e.g. 
the assumption that  E I T  can also be applied to driven systems is shown to be equivalent to 
the assumption that  even if the systems under consideration are under the influence of an 
external force the time evolution in MEIT approach as t ~ c~ the time evolution in Mxr). 
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I. INTRODUCTION 

Most polymeric systems such as high polymer weight melts, blends, 

composites and solutions are known to exhibit complex rheological 

behaviour. Constitutive equations or rheological models are needed for 

understanding and clarifying the strange flow phenomena encountered in 

polymer processing: extrudate swell, vortices, instabilities, etc.. 

Parameters contained in rheological models can be advantageously used 

to correlate data and obtain master curves incorporating such effects 

as molecular weight, molecular weight distribution, polymer 

concentration, chain flexibility, solvent properties, etc. Finally, a 

ultimate objective in developing constitutive equations is to obtain a 

correct expression for the stress tensor in terms of the 

thermo-mechanical history of any given polymeric system. 

Three basic approaches can be followed in writing down a 

constitutive relation. One can use the principles of continuum 

mechanics to propose admissible forms and assess these forms with 

appropriate sets of experimental data. A more promising and rewarding 

route is, however, through the so-called molecular theories. These 

theories should lead to a number of meaningful parameters that can be 

used not only for correlating data but for extrapolation and formulating 

new products. Molecular theories leading to constitutive equations 

applicable to large deformation flows can be subdivided into four main 

categories: i) the phase space and configuration space kinetic theories 

such as those proposed by Kirkwood [i] and refined and extended by Bird 

and co-workers [2], ii) the network theories derived for polymeric 

liquids from solid rubber theories by Lodge [3] and by Yamamoto [4] and 

extended by Carreau [5], Macdonald [6] as well as many others, iii) 

reptation theories, based on the original concept of Edwards [7] or de 

Gennes [8], proposed by Doi and Edwards [9], extended to large 

deformation flows by Marrucci [I0] and put into the phase space kinetic 
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framework by Curtiss and Bird [II] and iv) the rheological models based 

on the conformation tensor, as those proposed by Han [12] and Giesekus 

[13]. Useful reviews of the first three categories of molecular 

theories have been presented by Bird [14] and a review by Carreau and 

Grmela [15] includes the conformation tensor models. The third route, 

combining the previous ones, has been proposed by Grmela [16] and by 

Grmela and Carreau [17]. It improves the first route by allowing to use 

molecular state variables as for example distribution functions and the 

second route by guaranteeing the compatibility of the governing 

equations of the model with thermodynamics and by providing a general 

formula for the extra stress tensor. 

This lecture summarizes our work on conformation tensor models based 

on the third route. Ait Kadi et al. [18] introduced a FENE-Charged 

potential to account for the "coil-stretch" transformation of 

macromolecules and explain rheological data obtained for polyacrylamide 

solutions in aqueous solvents containing various quantities of salt. 

The case of rigid polymeric chains has been discussed by Grmela and 

Carreau [17] and Grmela [16] and the modification needed to account for 

the semi-flexibility of chains has been introduced by Grmela and Chhon 

Ly [19], and discussed by Carreau et al. [20]. Ajji et al. [21] used 

two conformation tensors to describe polymer melts as a blend of free 

macromolecular chains and entangled chains in a network. With that 

model, they could account for changes in the entanglement structure due 

to a controlled solution precipitation treatment. 

Trying to describe mathematically the time evolution of the complex 

fluids we have to, first, choose the quantity characterizing the 

internal structure (we shall call it an internal state variable) and, 

secondly introduce equations that govern the time evolution of the 

hydrodynamic fields and the chosen internal state variable. The choice 

of the internal variables is always a compromise between completeness 

(the ability to describe molecular details) and simplicity (the 

easiness with which the governing equations are solved). Since the 

focus of this lecture is on solutions, we shall emphasize the latter 

requirement and choose the conformation tensor ~ as the internal state 

variable [12,13]. The tensor ~ is assumed to be symmetric and positive 

definite. From the physical point of view, we can regard it for example 

as a molecular deforma£ion tensor. Following Han [12] and Giesekus 
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[13], the conformation tensor can be viewed in reference to a 

distribution function ~(r,t) as the second moment of the end-to-end 

vector R (see Figure i), i.e. 

c(r_,t) = < R R > = ~ @(r,R,t) R R d r (z) 

Here it represents the average conformation of coil structure under 

any flow conditions. Other interpretations will be introduced in 

Section 3. 

Fiqure 1 Polymeric chain in a coil conformation 

We shall assume, however, that the internal structure of the fluids 

that we shall discuss is spatially homogeneous (i.e. ~ is independent 

of the position vector r) and that the fluids are isothermal and 

incompressible. This means that the only state variables that we shall 

consider are the velocity field X(~,t) and the conformation tensor ~(t). 

In formulating the time evolution equations we are led by the 

following requirements: 

(i) The governing equations should have a clear physical mea'ning. 

This means that we should be able to express clearly the 

molecular nature of the fluids in the governing equations and 

thus consider the governing equations as a bridge between the 
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molecular properties and the thermodynamic and flow properties 

that are observed in thermodynamic and rheological 

measurements. What we want to avoid in particular is the 

introduction of physically unjustified approximations, like for 

example the closure approximations, that are necessary if the 

governing equations are searched as a reduced (simplified) form 

of equations that have been formulated originally with the 

internal state variables that can describe more molecular 

details than the chosen internal state variable. 

(ii) We naturally require that solutions of the governing equations 

agree with results of observations. Let us consider first a 

general observation on which equilibrium thermodynamics is 

based (i.e. isolated fluids reach, after some time, a state at 

which results of thermodynamic measurements do not change in 

time and the behaviour of the fluids is well described by 

equilibrium thermodynamics). It has been shown [16,22] that 

the agreement with this observation is guaranteed if the 

governing equations possess some general structure. The 

structure plays moreover the role of a pivotal point about 

which the process of expressing the physical (molecular) 

nature of the fluids in the governing equations can be 

organized. 

In Section 2, we introduce a general form of the governing equations 

for the state variables v(r,t), ~(t). Solutions of the equations 

and their comparison with rheological observations are discussed in 

Section 3. 

1.1 Material functions 

AS we are mostly concerned here with rheological behaviour of 

polymers in relation to processing, we introduce only the rheological 

or material functions commonly used to describe the non-linear 

behaviour. The steady and transient simple shear flow is defined by the 

following velocity profile: 

Vz(Xz,t) = 9(t)x2 (2) 

V 2 = V 3 - - ~  0 

w h e r e  ~ ( t )  = ( a v z / a x 2 )  = s h e a r  r a t e .  
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For steady shear flow, 9 is constant and the material functions are 

n(9) = a~2/9 (3) 

~I(9) = ((~11 -- 09"22) / 9  2 (4) 

~2(9) = (0"22 -- 0"33) / 9  2 (5) 

For stress relaxation after cessation of steady simple shear 

9(t) = 7o [i - h(t)] (6) 

where h(t) is the unit step function: h(t) = 0 for t < 0 and h(t) = 1 

for t > 0. The constant 9o is the initial constant shear rate. The 

shear stress and normal stress relaxation functions are introduced by 

~ - ( t ; 9 o )  = o12 /9  o 

~ [ ( t ; 9 o )  = ( ~  - o22 ) /9o  2 

For stress qrowth after onset of steady simple shear, 

9(t) = 9. h(t) 

and ~+(t;9®) = o12/9®, 

+ 
@i(t;7~) = (a11 - a22)/9. 2 

where 9. is the constant applied shear rate. 

(7) 

(8) 

(9) 

(10) 

(11) 

In the case of uniaxial elonqation at constant volume, the flow is 

non-viscometric and the velocity profile is given by 

v1(xl,t) = ~xl 

V2(X2't) = 2 X2' V3(X3't) = 2 x3 (12) 
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where ~ is the elongational rate (constant for steady state). 

elongation viscosity is defined by 

The 

all -- a22 
7. = (13) 

2. GOVERNING EQUATIONS 

Following [16,22], the equations that govern the time evolution of 

the velocity field X (r,t) and the conformation tensor ~(t) are: 

8M 
- -  = - v . vv - vp + v • a (14) 
at -- -- = 

v . x = 0 (15) 

aA(c) 
D=C(t) = (VV+ "- _c) + (C_ • Vv) - --A (c) • =C • = 
Dt dc 

(16) 

where v denote the spatial gradient, p is the scalar pressure 

(determined by the incompressibility condition (15)), ~ is the extra 

stress tensor, ~ is the mobility tensor (specified below), A is the free 

energy (also specified below). In order that eqs. (14)-(16) be 

compatible with equilibrium thermodynamics [16,22], ~ is such that 

• ~ is positive definite (17) 

and 

da(~) 
= -2n S " (18) 

d E 

where n is the number density of the macromolecules. Equations (17) and 

(18) guarantee that eqs. (14)-(16) represent a particular realization 

of the general nonlinear Onsager-Casimir time evolution equation 

[16,22]. This means in particular that eqs. (14)-(16) are compatible 

with equilibrium thermodynamics. Now we shall discuss the quantities 

A and ~ arising in eq. (16). 

The free energy A is given by 

A (___) = E(c) - T S (c) (19) 
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where E represents the inter and intra molecular energy, T is the 

temperature (assumed to be a constant) and S is the entropy. Led by 

equilibrium statistical mechanics, we can express our insight into the 

molecular nature of the polymeric fluid under consideration in the 

quantities E (~) and S (~). Several examples will be discussed in the 

next section. 

The mobility tensor ~ characterizes the frictional forces. The 

choice of this tensor is determined by phenomenological considerations 

(see the next section) and by the condition (17). 

It we consider E, S and ~ as undetermined quantities (parameters), 

equations (14) to (19) represent a large family of rheological 

equations. It is important to note that the compatibility with 

equilibrium thermodynamics of all rheological equations in the family 

is guaranteed and that the quantities E, S and ~ have a clear physical 

meaning. This then implies that we know how these quantities reflect 

the molecular nature of the polymeric fluids and we can thus suggest 

their form for a given polymeric fluid. Many well known rheological 

models lie inside the family (14) to (19). The relation between the 

models introduced previously and the choice of E, S and ~ is discussed 

in detail in Ref. [23]. 

3. PREDICTIONS AND COMPARISON WITH EXPERIMENTS 

3.1 Rheological Invariants 

The question that we can ask is what are the predictions (i.e. 

properties of solutions of eqs. (14) to (19)) that are common for all 

the family (i.e. that are independent of the choice of the quantities 

E, S and ~)? We shall call these properties rheological invariants of 

the family of the rheological models (14) to (19). It is obviously 

very interesting to find the invariants since if we find that any 

invariant does not agree with experimental data, then we have to reject 

the whole family. 

We know already one such rheological invariant, namely the 

properties of solutions that imply the compatibility with equilibrium 

thermodynamics. We are, however, interested in particular in flow 
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properties observed in rheological measurements. We shall look for such 

properties in a somewhat smaller subfamily. The subfamily that we shall 

discussed first will be called a family of isotropic rheological models 

[17]. The choice of E, S, ~ is restricted by: 

1 
S(c) = -- kB in det c (20) 

2 

E(c) = E(c) (21) 

A(C) = A(C)~ (22) 

where c = tr ~ (trace of ~), k B is the Boltzmann constant, ~ is the unit 

tensor, E(c) and A(c) remain undetermined. The entropy (20) is the 

entropy of the noninteracting macromolecules (recall that the entropy 

for an ideal gas is proportional to In(volume) and that (det ~)% is 

proportional to the volume occupied by a molecule). The subfamily of 

isotropic rheological models is thus parametrized by two scalar 

functions E and A of c = tr ~. Particular examples of models lying in 

this subfamily are the Maxwell upper convected model (E(c) = const. X 

tr ~, A(c) = const.) and the FENE-P model [24] (E(c) = const. X I/(l- 

tr ~/Ro) , R o is constant). 

The rheological invariants of the subfamily of isotropic rheological 

models are the following: 

I. {a33(9)-az2(9) },h,,r = 0 (23) 

2 
2. n k B T {azz(9)-o11(9)},h,, r = 2{Ozz(9)},hea r (24) 

3. {O12(9) },h.ar is related to {On(~)-O22(E)}elon , by 

Q ® 

o x , / o  
{ O11-O22 },long 

where 1,2,3 are transformations specified as follows: 

i is known if (Ol2)sh,ar is known as a function of 9 ; 
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2 2 

(0"12;) shear 9 (a12) shear 
2 : (a11-a22) .ion, = + (a12) ,h.ar ( 

2n k B T 4 (n k B T) 2 
+ 3) z/2 ; 

(0"12) shear 
3: a :~ 

(all-a22) elong 

4: is known if (an-a2~)alon , is known as a function of ~. 

We shall now explain the notation and discuss the above three 

rheological invariants one after the other. We solve eqs. (14)-(22) 

for shear flow: 

[o o 1 0 0 0 
(Vv) = ~ 0 (26) 

0 

and unaxial elongational flow: 

[o o 1 1 0 
(Vv) = ~ -% (27) 

0 -% 

The extra stress tensor that arises as a solution of eqs. (14)-(22) is 

denoted as (~).haar if VX is given by (26) and (~)azon, if VX is given by 

(27). The extra stress tensor ~ appearing in eqs. (23) to (25) is a 

stationary solution of eqs. (14) to (22), (26), or (14) to (22), (27). 

The first invariant (eq. (23)) implies that the secondary normal 

stress difference or ~2 is equal to zero. This is also known as the 

Weissenberg hypothesis. Very few ~z data have been reported in the 

literature, due mainly to difficulties in measuring with accuracy this 

material function. Nevertheless, ~2 is believed to be small compared 

to ~z and negative: ~2 has been found to be in the range of I0 to 13% of 

-~z [2,25]. The only way to make the second normal stress difference 

different from zero (in the context of conformation tensor models) is 

to introduce a modified generalized time derivative (e.g. a slip is 

introduced) or a tensorial mobility (see [13]). We note that the use 

of a slip parameter in eq. (16) less than unity will lead to negative 

secondary normal stress differences [17,18]. 
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The second invariant (eq. (24)) implies that the primary normal 

stress coefficient is proportional to the shear viscosity. This is 

shown in Figure 2 to represent well the behaviour of five different 

polymer solutions. The slope of the curves representing ~i as a 

function of ~ in logarithmic scales equals two for five very different 

polymeric solutions. The contribution of the solvent to the viscosity 

has been subtracted, as the governing equations (14) to (22) describe 

the contribution of the polymeric chains only. We conclude therefore 

that the isotropic rheological models (21)-(22) are good candidates for 

describing all five solutions. The choice of the conformational 

dependence of the mobility A and the modulus H will be, of course, 

different for every one of the five solutions. Eq. (24) is an excellent 

test of the applicability of the family of models (eqs. (14) to (22)). 

Further assessment of this relation is in progress. 

I0  7 

i 0  e 

i 0  ~ 

10 4 

lO 5 

c~ i 0  2 
n 

i 0  ° 

i 0  -I 

i 0  -2 

10-3 

i0  -I 

. / 

0 7% A.L. 
• 2 %  P.A .M.  .,,i x 
• P . , .8 .  

0 Z5VoP.S. .,,46 / 
• o . . 

I I I I 

I0  ° I01 I0 z IO 3 IO 4 

"9-7? s , P a . s  

Fiqure 2 Primary normal stress coefficient as a function of the 
reduced viscosity for five different polymer solutions. 
The solutions are described in [17]. The straight lines 
have a slope of 2. 

The third invariant (eq. (25)) could be called a generalized Trouton 

relation. It derived as follows [26]. If we write eqs. (16), (18) with 

is D~/Dt = 0 and S, A, E, ?X given by (20) to (22), (26) we obtain a 

nonlinear algebraic equation that we write finally as 
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Fshear { ( g )  sh . . . .  (C)sh  . . . .  ~ }  : 0 ( 2 8 )  

The same equations obtained for Vv given by (27) will be denoted 

formally by 

melong {((~)elong, (C) elong , ~} = 0 (29) 

We now look for a transformation T 

T 

{ (~) sh .... (C) sh .... ~} -~ { (~) elons, (~___C) elong , £} (30) 

such that Fshea r {T [(=~)sh .... (C) sh .... 9 ]} = F.lon~ {(£),1ong, (C) elons, ~}" 

The transformation described in (25) is such a transformation. We note 

that if we consider 9 * 0 then (25) implies the Trouton relation: 

r/eo = 3~/o ( 3 1 )  

and if ~ ~ 

2n 
m - (32) 

l-n 

where m and n are the power-law indices at high deformation rates for 

~e and ~ respectively i.e. 

~e (~)  - I  ~ I m-1 

as ~ ~ 

and ~ (7) ~ I 7 I n-1 

as ~ ~ 

We note that for polymeric solutions, the solvent contribution has to 

be considered (~es = 3~s). 

Unfortunately, there exist very few reliable elongational data at 

high elongational rates and under steady-state conditions to test 

relation (32). If we take a value of 0.5 for n (typical value for 
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polyolefine melts), then m is found to be equal to 2. Hence the 

elongational viscosity is expected to increase with increasing 

elongational rate. This has been reported for low density polyethylenes 

[27], but decreasing elongational viscosity with increasing rate has 

been observed for linear polyethylenes. A value of m smaller than 1 

implies a power-law index, n, smaller than 1/3. This, in light of the 

very few available data, appears to be too restrictive. 

Finally, we note that the invariants 2 and 3 refer to relationships 

between two different (independent) rheological measurements. To check 

these relationships is very important, more than the verification of 

isolated measurements. In the following sections, we give three 

examples of models which describe quite different physics. 

3.2 FENE - Charqed Macromolecules 

Charged polymers known as polyelectrolytes are widely used in 

various industrial processes encountered in the food, pharmaceutical, 

paint, pulp and paper industries and are also used for mobility control 

of fluids in porous media. A rheological model for polyelectrolytes has 

been proposed by Dunlap and Leal [28] who used a Coulombic potential to 

account for electrostatic repulsive forces. The concept of isotropic 

but conformation-dependent friction coefficient [8,29,30] has also been 

introduced into the setting of the FENE-P model [18] to represent the 

coil-stretch transition experienced by macromolecules during flow. 

As shown in Ait Kadi et al. [18], we used a FENE potential and a 

Coulombic potential to write the Helmholtz free energy as: 

A(c) = - H Ro 2 in (l-C/Ro z) + E c -% - ½ k s T in det c (33) 

where H is the coil (spring) modulus, Ro its maximum extension, E is a 

constant and the second term of the right-hand-side implies that the 

electrostatic forces derived from the electrostatic potential U c 

decrease as the inverse of the square of the extension (c) of the 

macromolecule [28]. The electrostatic charges are regarded as being 

concentrated at the ends of the polymer chain. This is equivalent to 

assuming that the distance between chain sub-elements is proportional 

to 8. The parameter E is related to the amount of available 



electrostatic charges. 

(entropic contribution). 

The last term is due to the Brownian motion 

It has been justified in [16,22]. 

Following de Gennes [8], Hinch [29] and Tanner [30], we use the 

following relation for the mobility 

^(c )  = ^o / ( i  + ,8  ,:) (34) 

This relation expresses the physics that as the coil is deformed and 

stretched under flow, its mobility is reduced. A o and ~ are two 

parameters and ~ (=~--~) is the reduced extension. 

For any flow kinematics, the set of governing equations can be 

solved to obtain material functions in terms of the following four 

parameters: 

b = 2H~ / k S T, extensibility parameter (35) 

e = E / k S T, electrostatic parameter (36) 

2 
A. = (i + ~ ~.), time constant (37) 

3kBTAo 

and ~, is the conformation or friction parameter. 

In (37) ~, is the equilibrium (no flow) value of ~, the reduced end- 

to-end distance or extension of the coil. It is given by the positive 

root of the following equation [18]: 

e 3 e 
~ + -  ~ ~o = o (38) 

3+b 3+b 3+b 

and A. is related to the zero-shear viscosity by 

~o - ~ s  M 
A. = [ ] (39) 

c RT 

where c is the polymer concentration, M its molecular weight and R, the 

gas constant. 
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Model Predictions 

Many examples of model predictions for steady shear and elongational 

flows have been presented by Aid Kadi et al. [18]. We summarize the 

effects of the electrostatic and friction parameters. We first note 

that if e and ~ are taken to be equal to zero, then the model is 

identical to the FENE-P model [24]. Figure 3 shows the influence of the 

parameter e. Part a) of the figure reports the steady shear and 

elongational viscosity as a function of a dimensionless deformation rate 

that is the product of A. times the square root of the second invariant 

of the rate-of-deformation tensor (this is equal to A.9 for shear and 

J3A,~ for elongational flow). Part b) of the figure reports the reduced 

extension as a function of the dimensionless deformation rate. 

Model predictions are reported for b = i000, ~ = 0, and e ranging 

from 0 to i000. As the electrostatic parameter increases, an 

intermediary region appears between the low rate of deformation zone 

(constant shear and elongational viscosities) and the high rate of 

deformation zone (shear-thinning viscosity with a constant power-law 

index equal to - 2/3 and a constant elongational viscosity). The 

electrostatic parameter affects the onset of the decrease of viscosity 

in shear flow and shifts the onset of the increase of the elongational 

viscosity towards lower values of deformation rate. Moreover, as e 

increases, the zero-shear viscosity increases and the high-rate-of- 

deformation elongational viscosity decreases. 

Figure 3b shows that the equilibrium extension increases with 

increasing e. The equilibrium hydrodynamic volume is then larger, due 

to the repulsive forces acting on the macromolecule chain, but the 

deformation due to the flow field is considerably restricted and the 

behaviour is that of a rigid chain. We also note that e has no apparent 

effect on the transition from the equilibrium conformation to the fully 

extended conformation in elongational flow. In shear flow large values 

of the electrostatic parameter result in a longer transition from the 

equilibrium to the stretched conformation. At the same time the onset 

of the transition is shifted towards high values of the velocity 

gradient. The results described above are comparable to those obtained 

by Dunlap and Leal [28]. 
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The influence of the friction parameter ~ is shown in Figure 4. In 

shear flow, ~ has little influence on the onset of non-linear effects. 

However, the transition from equilibrium to full extension is more rapid 

as ~ increases. At the onset of the deformation state, for ~ > O, the 

shear viscosity starts to increase with increasing rate of deformation 

(shear-thickening), up to a maximum corresponding to 50% of the full 

extension. Then the effect of the FENE connector becomes important, and 

the viscosity starts to decrease, following a power-law model with a 

constant exponent equal to - 2/3. The amplitude of the shear-thickening 

phenomenon increases with increasing values of ~, but tends towards an 

asymptotic value for high values of the friction parameter. Tanner 

[30], using a Dirac-delta function to approximate the configuration 

distribution function, has obtained identical results. Equivalent 

results were also obtained by Fuller and Leal [31] and Dunlap and Leal 

[28] using the "Peterlin pre-averaging approximation". 

The effect of ~ is more pronounced in the case of elongational flow. 

The onset of the transition from undeformed to extended conformation is 

dramatically shifted to lower values as ~ increases. This corresponds 

to an increase in the elongational viscosity at lower rates of 

deformation. Moreover, the value of the second elongational viscosity 

plateau increases with ~ up to a limiting value reached for ~ > i00. 

The model also predicts a "S-shaped" curve, for both the elongational 

viscosity and the molecular extension for non-zero values of ~. This 

phenomenon has been predicted by several authors (de Gennes [8], Tanner 

[30], Fuller and Leal [31], Dunlap and Leal [28] and others. 

One objective in developing the model was to describe shear- 

thickening behaviour observed for polyacrylamide solutions in simple 

shear experiments. Figure 5 compares the viscosity data of partially 

hydrolyzed HPAAm (Pusher 700 from Dow Chemicals) solutions in a solvent 

mixture contained 20 percent (by weight) distilled water and 80 percent 

glycerol. The solvent also contains 20g/L of added sodium chloride 

[32]. The shear-thickening behaviour observed for dimensionless shear 

rates, A,9, larger than I0 is fairly well predicted by the model using 

a friction parameter ~ equal to 5. We stress than none of these polymer 

solutions except may-be the 170 ppm are dilute solutions and A, is an 

increasing function of the polymer concentration. Hence, intermolecular 
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interaction and possibly entanglements may play an important role on the 

observed phenomenon. Further discussion can be found in [18]. 
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3.3 Wormlike Macromolecules 

In this section, we focus on rod-like or semi-flexible wormlike 

macromolecules. We consider the polymer chains to be rigid in average, 

but we allow for some flexibility in the chains. We choose the wormlike 

model with Kuhn segments of length £, as shown in Figure 6. 
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Figure 6 Sketch of a wormlike molecule 



144 

The results of Khokhlov and Semenov [33,34] obtained for entropy of 

chains made of sub-segments vibrating about an angle $ close to 2~ can 

be written within a constant term as: 

S = kBT in det ( ) - b tr (( )) (40) 
2 

where b is a parameter related to the chain flexibility that we take as 

b = L/~ (41) 

where L is the contour length of the polymer chains. We note that if 

b << i, the chains are rigid. On the contrary, if b >> i, the chains 

are quite flexible. The intramolecular energy will be replaced by a 

constraint F(~) = tr ~ = R~ (rigid-in-average chains). 

Equation (19) for the free energy becomes then: 

= k~T ~F(c) - a in det ( ) + b tr (( ) ) (42) A(t) 2 

In Eq. (42) we have introduced also the parameter a, which weighs the 

influence of the standard contribution of the Brownian motion with 

respect to the effect of the chain flexibility. The physical 

justification is the following. Brownian motion is of importance for 

small or molecular size particles. For larger particles such as 

crystallites, fillers, fibers, the contribution of the Brownian motion 

to the free energy will become more and more negligible as the particles 

size increases. The Lagrange multiplier ~ is obtained from the 

requirement that the constraint holds for all times, i.e. 

dF d (c ~) 0 (43) 
dt dt 

To obtain the components for the stress tensor and material 

functions under various flow situations, we follow the procedure 

outlined by Carreau et al. [20]. The solutions are in general not 

analytical and numerical schemes have to be used. 

If we restrict ourselves to a constant mobility A = Ao, then the 

material functions can be described in terms of three parameters: b as 
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defined by eq. (41) (it plays a similar role as in the FENE-type 

models); the parameter a which weighs the Brownian motion and a time 

constant defined by: 

I = 2Ro2/kBTAo (44) 

and it is related to the zero-shear viscosity by: 

% = lim a12/9 = 1/3 nkBTl (45) 

9~0 

On the other hand, the zero-shear primary normal coefficient is 

expressed by: 

2nkBTA 2 2%~ 
~io = -- (46) 

9 (a+12b) 3 (a+12b) 

As expected, both contributions to the Brownian motion affects the 

material's elasticity as well as the shear-thinning properties. 

Figure 7 shows steady-shear viscosity master curves for different 

values of the parameters a and b. It is interesting to note that with 

increasing chain flexibility (increasing value of b), the onset of shear 

thinning appears at higher reduced shear rate, ~9- Also, with 

increasing flexibility, the viscosity becomes less shear-thinning: the 

slope in the power-law region increases from -2/3 for rigid chains to 

approximately -1/2 for semi-flexible chains. 

We notice that this result for b = 0 is significantly different from 

that obtained by Bird et al. [2] for rigid dumbbells in the context of 

the configuration phase space kinetic theory, which does not admit a 

closed form solution. The power-law exponents for the viscosity and the 

primary normal stress coefficient were found to be respectively -1/3 and 

-2/3, i.e. half of the values obtained for the rigid-in-average model. 

It is not clear to us why such differences in the high-shear rate 

behaviour are observed. We finally note that this case is identical to 

the FENE-P model for b ~ 0, e = ~ = 0, discussed in section 3.2. 

The primary normal stress coefficient describes similar master 

curves as shown in Figure 8. 
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The results obtained numerically when flexibility is considered 

appear to verify the relationship (24) between the primary normal stress 

coefficient and the shear viscosity. The power-law slope for ~I varies 

from -4/3 for rigid chains to -i for semi-flexible chains. We notice, 

however, that the proportionality factor is no longer the same, due to 

the parameter a affecting the primary normal stress (see eq. (46)). 

Figure 9 illustrates the conformation tensor for simple shear flow, 

using the principal values to generate ellipses. In Figure 9a, the 

conformation in the case of rigid rods (b=0) is shown to be more 

oriented in the flow direction as the dimensionless shear rate is 

increased. Figure 9b shows the influence of flexibility on the 

orientation of the conformation tensor. As expected the more flexible 

chains are less oriented by the flow at the same dimensionless flow 

rate. 

The transient behaviour in shear flow and the elongational 

properties predicted by the model are of considerable interest. Figure 

i0 compares the model predictions of the shear stress growth and 

relaxation functions for the rigid and semi-flexible chains. In Figure 

10a, we show the influence of the dimensionless rate on the stress 

growth and stress relaxation functions for rigid rods. With increasing 

shear rate, the model predicts overshoots in the growth function (7 ÷ ) 

that increase with increasing shear rate and the maximum of the 

overshoot occurs at shorter time with increasing ~9. This is in 

agreement with experiments with typical viscoelastic fluids. The 

relaxation curve, however, is a unique function of the dimensionless 

time t/~. This is not supported by experimental observations which show 

faster relaxation at higher shear rates. 

Figure 10b shows how the chain flexibility affects the transient 

behaviour. With increasing value of b, the behaviour becomes closer to 

that of a Newtonian fluid, i.e. the shear stress grows more rapidly to 

the steady-state value but depicts no overshoot; the stress relaxes more 

rapidly after cessation of steady shear flow. This is in line with the 

predictions of the onset of shear-thinning at higher shear rates (see 

Figures 7 and 8). 
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As a last example, we show in Figure II the effect of chain 

flexibility on the elongational viscosity. The elongational viscosity 

increases with the dimensionless elongational rate, as it was predicted 

for coil type chains (section 3.2), however, the high strain rate 

plateau is equal to 2 times the low deformation rate elongational 

viscosity, independently of the chain flexibility. We observe, 

moreover, that strain-hardening occurs at much smaller dimensionless 

strain rate for rigid rods (b=0). For b=100, the onset is observed at 

a value of ~ I000 times larger than for rigid rods. 
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Fiqure 11 Effect of chain flexibility on the steady elongational 
viscosity as a function of the dimensionless elongational 
rate; a = 1.0. 

3.4 Entangled Chains 

In this section, we summarize the ideas proposed by Ajji et al. [20] 

to describe entanglement control in polymer melts. The polymer melt is 

considered to be composed of free chains and chains in an entangled 

network as illustrated in Figure 12. 

The change in the morphological structure and the properties are 

represented by changes in two conformation tensors and by a change in 
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the relative fraction (m) of chains in the network and free chains. 

This model can be viewed as an extension of the Jongschaap model [35]. 

ENTANGLEMENTS 

Fiq~re 12 Polymer melt in an entangled network 

We use two conformation tensors, ~ to describe the free chains and 

for the network. The free energy A is taken as 

A(~,~,T) = ~(~,T) + (I-m)A~(~,T) + m(l-m)Ai(~,~,T ) 

network free chains interaction 
contribution contribution contribution 

(47) 

If m = 0, that is, if the polymer is composed of only free chains, 

then it follows from eq. (47) that A = Af. We shall assume that the 

free chains are the FENE chains and thus eq. (33) for E = 0 and using 

the reduced extension (~ = (tr c/R~) ~ becomes: 

A t = - H ~ in (l-~)-½ k B T in (det ~) (40) 

If m = i, that is, if the polymeric medium is composed of only the 

network then if follows from eq. (47) that A = A~. Following Leonov 

[36], we take 

= ~(tr (~ - ~))2 + # tr((~ - ~)z) (49) 

where ~ and ~ are constants. 
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The term A i has the physical meaning of chemical affinity for the 

entanglement-disentanglement process regarded as a chemical reaction. 

It is possible to use similar considerations as those that led to A t 

and A n (essentially based on equilibrium statistical mechanics) and 

suggest A i. At this stage we prefer, however, another approach. 

Instead of introducing Ai, we suggest an equation that governs the time 

evolution of m (the "chemical kinetics" equation). 

The evolution equations for ~, ~ and m are chosen as: 

Dc 2 aA 2 aA aA 
= - Vv +_ . =c + c . VV_ c • u - 

Dt ~fk~T(l-m) ac kBT~ i {ac ~a~ }° 
(5o) 

Dd 2 aA 2 aA aA 
= - Vv + . d + d . Vv - {d (51) - = • 

dm 1 aA i 
. . . . . .  (52) 
dt k sT A a m 

We shall now explain the meaning of the symbols and the orlgzn of 

the terms arising in these equations. The operator { }0 makes the 

tensor inside the bracket traceless [i.e., {T}0 = T - (trT)=6/3 for any 

tensor T]. The first two terms on the right-hand side of eqs. (50) and 

(51) together with the substantial time derivative D/Dt form the Oldroyd 

upper convective time derivative. This means that we consider only 

affine deformations. The remaining terms on the right-hand side of eqs. 

(50) and (51) and the term on the right-hand side of eq. (52) are chosen 

so that the following requirements are met: 

i) If m = 0 (i.e., if the polymer is composed of only free chains) 
then eqs. (50 to 52) reduce to the governing equation (16). 

ii) If m = 1 (i.e., if the polymer is composed of the network only) 
then eqs. (50 to 52) reduce to the governing equations of the 
Leonov model [36]. 

iii) Equation (52) is the so-called Marrucci equation [37]. 

dm 2 
(m, - m(l - k01tr(~ ) Itr(=~)~)) (53) 

dt A 

where m plays the role of the structural parameter x i eq. (19) of 
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Acierno et ai.[37], ~, me, and k 0 are parameters. In this general case, 

the stress tensor is given by [16] 

aA aA 
= -2n~ [~'~=c + { ~ " a--~ }0] (54) 

where n z is the number density of free chains defined by nfk B = p R/M, 

p is the polymer density, and M its molecular weight. 

Details on the solution of this set of governing equations can be 

found in Ajji et al [21]. We recall here the parameters of the model: 

the characteristic times associated with each phase (Az and A,), a 

characteristic time of the interactions (A±), a parameter b related to 

the flexibility of the free chains (identical to b in the FENE model 

of section 3.2), two parameters ~ and ~ related to the connectivity and 

rigidity of the network, finally, two parameters related to the kinetics 

of creation of entanglements: me, the equilibrium fraction of segments 

in the network, and k 0 a rate constant. 

Figures 13 and 14 compare the model predictions with the steady- 

state shear viscosity and primary normal stress data for a polypropylene 

melt. 
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Figure 13 Model predictions and experimental results for the 
viscosity of PP at 200°C (M~ = 2.3 105, Mw/M ~ = 5.90); 
7o = 47.7 kPa. S., G = 0.4, /9 = 0.25, A n = 3.45s, Af = 13,7s, 
b = i, k o = 0.5 Pa -% and m o = 0.7. 
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Model predictions and experimental results for the primary 
normal stress coefficient of PP at 200°C, 410 = 550 kPa.s 2, 
the model parameters are given in Fig. 13. 

It is interesting to note that the model predicts a much smaller 

contribution of the free chains to the stresses compared to the network. 

This is to be expected from such a high molecular weight polymer melt. 

It is shown in Ajji et al. [21] that this model can describe 

entanglement modifications obtained by solution precipitation 

treatments. Simplified version of this model is now being assessed and 

the results will be reported in a forthcoming publication. 

4. CONCLUDING REMARKS 

By choosing the conformation tensor ~ as the variable describing 

polymer macromolecules and by following the thermodynamic modelling 

technique we arrive at a setting that is both simple to use (in 

particular in numerical calculations of processing flows) and useful in 

providing a bridge between molecular and flow properties. The 

quantities (depending on the conformation tensor) that enter the models 

are the inter and intra molecular energies, the entropy and the mobility 

tensor. Considerations based on equilibrium statistical mechanics and 

molecular dynamics can be used to specify these quantities for the 

polymeric fluids under consideration. Once these quantities are 
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specified the governing equations of the rheological model and the 

formula for the extra stress tensor arise as a result. There is no 

need for additional approximations (like for example the various closure 

approximations). Numerical calculations of processing flows that use 

some of the models presented above are in progress. We hope to be able 

to present the results in a near future. 

In the chapter, we have presented three examples of rheological 

models that illustrate how flexible the conformation tensor approach is 

in the setting of diffusion-convection formulation. Completely 

different physics can be described and reasonable fits with experimental 

results can be obtained. 
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BIOFLUIDS AS STRUCTURED MEDIA"  
RHEOLOGY AND FLOW PROPERTIES OF BLOOD 

D. Quernada, LBHP, Tour 33/34, Univ. PARIS 7 
2 Place Jussieu, 75005, Paris (France) 

0. INTRODUCTION 

Most of biofluids exhibit steady and unsteady rheological properties 
quite similar to those observed in many disperse systems. Such general 
properties must be interpreted as resulting from some general characteristics that 
these systems have in common, although they may appear very different (as 
blood or synovial fluid and a slurry, for ex.). The existence of an internal structure 
(usually called "micro'-structure, although it is observed at any scale) and shear 
induced changes in this structure are now recognized as responsible of these 
common properties. Therefore, "structural models" (i.e. models which involve 
such structural changes) are believed to be the most capable to allow us 
rheological characterisation of these materials. 

Biofluids can be considered as either (more or less complex) polymer 
solutions or, more generally, dispersions of some inclusions in such solutions. We 
can crudely separate biofluids into two classes of materials: 

(i) biofluids in which interactions between macromolecules are dominant, 
hence which behaves as polymer solutions, either "pure" (as synovial fluid, for ex.) 
or slightly modified by the presence of few inclusions (as bronchial secretion, cell 
protoplasm, for ex.). 

(ii) biofluids containing a large amount of dispersed "particles" in a polymer 
solution, hence which behave as a dispersion, the properties of which are mainly 
governed by particle-particle and polymer-particle interactions (as blood, 
lymph .... for ex.). 

Another type of differences comes from difficulties in both sampling 
and physico-chemical characterisation, which result into very different levels in 
improvement of biofluid modelling. From this point of view, models in blood 
rheology have reached the upper level in quantitative predictions of both blood 
rheological properties and blood flows, that made blood an exception among 
biofluids. This likely results from superimposition of several factors, likely (i) the 
"precise characterization" of the system, as a consequence of reaching a high 
level in self-regulation by physiological control of blood characteristics (e.g. protein 
content in plasma) and flow conditions (e.g. matching of cardiac frequency, vessel 
size .... ), (ii)a very quantitative knowledge in basic physico-chemical properties of 
blood components (red and white cells, platelets, different species -especially 
ions and proteins-- in plasma...), (iii) cumulative efforts in research due to the 
important role blood circulation plays in human body (more especially the 
"microcirculation", in very small vessels), in relation with heart diseases). On the 
other hand, as "simple" polymeric media, synovial fluid and differents kinds of 



159 

mucus show basic properties which are also well-understood, however their 
sampling is often very hard to be reproducible and requires techniques which 
may, without caution, completly change the properties of the material. Other 
biofluids -as  living cell content, secretions (saliva, sweet .... ), fluid in cephalo- 
rachidian cavities, semen...-- gather both kinds of difficuty. Therefore, in the 
following, we shall focus our attention on hemorheology and blood flow properties 
and modelling. 

Basing us on the analogies we have just mentioned, the aim of this 
lecture is to discuss the possibility of applying to Blood and Red Cell suspensions 
some rheological models of dispersions, already developped from theoretical 
grounds. 

1. MAIN CHARACTERISTICS OF BLOOD FLOWS. 

1 . 1  - Blood const i tuents (see e.g. Burton, 1966; Lewis, 1970; Shiga & al, 1990) 
Blood is a very highly concentrated suspension (about 40-45% in volume 

fraction) of different kinds of cells (suspended in a continuous phase called 
plasma): Red Cells (RBC),White Cells (WBC), Platelets, alternatively called 
erythrocytes, leucocytes and thrombocytes, respectively. 

Plasma is an aqueous solution of electrolytes and organic substances, 
mainly proteins, in relative proportions as shown on Table 1. It behaves as a 
newtonian fluid. 

TABLE 1. BLOOD CONSTITUANTS 
CELLS ELEMENTS (5. 106 particles/mm3) (Relative proportions) 

White cells (all kinds) 1 
Platelets 30 
Red Cells 600 

PLASMA (Weight fraction) 
Water 0.91 
Inorganic solutes 0.01 
Proteins 0.07 

Other organic substances 0.01 

As RBCs represent, in normal conditions, about 97% of the total cell volume, 
mechanical properties of whole blood are dominated by the presence of RBCs 
and their properties. Of course, this is not true in some pathological cases as 
leukaemia, where the large number of WBC increases both blood viscosity and its 
shear dependence. 

In order to quantify RBC concentration, Physicians use the volume fraction 
of packed Red Cells (plus the plasma volume trapped in between), called 
hematocrit H, which is obtained by centrifuge of a sample of whole blood 
prevented from clotting by addition of anticoagulant (Protocole are now well- 
defined that allows to observe blood rheological properties free from effects of 
drawing and sampling, especially those due to anticoagulants). Hematocrit 
strongly depends on RBC deformability and it is better to use the true volume 
fraction ~. 

Fled Cel ls.  RBC dimensions are illustrated in Fig.l.1. The biconcave 
discoid rest shape of (mammals) RBC results from nucleus ejection on entering 
the circulation (from the bone marrow). This leads to a volume reduction of the 
cell, without changing its membrane area. 
Hence, RBC can be considered as a partially inflated balloon having a very high 
deformability which decreases with cell aging (mean life time ~ 120 days). 
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Fig. 1.1- Human Red 
Blood Cell 

Cell internal fluid is a water solution of hemoglobin (35 
g/100 ml), the viscosity of which is about 6-8 cP. 
Mechanical study of motion of a single RBC suspended in a 
flowing fluid, demontrated that RBC rotates as a disc 
having an equivalent axis ratio, re-.26 (Goldsmith & 
Mason, 1967). The RBC membrane consists of a 
bimolecular leaflet (a lipid bilayer with anchored proteins) 
rigidified by a skeletal structure (the actin-spectrin network, 
anchored on the internal lipid layer). 
A negative electrical charge is found equivalent to about 
6,000 electron charges. 

Fig. 1.2- Morphological changes of erythrocytes. Stages of Transformation to 
echinocytes (upper array) and stomatocytes (lower array) 

(from Kon & a1,1983) 

In steady conditions, blood settling occurs, however very dependent on 
blood internal structure (i.e. levels in RBC deformability and RBC aggregation, see 
hereafter) therefore allowing to distinguish pathological blood from normal one 
(the Erythrocyte Sedimentation Rate (ESR)is used in hospitals in this goal). 
Although negligible in almost all parts of the in vivo circulation, sedimentation 
effects becomes more and more important as shear rate is lowered (that requires 
to take precautions for rheometry). Important settling effects were found in 
horizontal narrow tube flows, in relation with RBC aggregation (Alonso & al, 1989). 

Change in osmotic conditions (normal ones correspond to those of 0.9% 
NaCI water solution) induced drastic changes in RBC shape (Fig.l.2). Indeed, in 
solutions of lower osmolarity than normal one, RBC becomes spherical after 
swelling (it is called spherocyte), with very negligible increase in membrane area. 
Further swelling leads to hemolysis of the cell, which eliminates hemoglobin 
towards the plasma, the resulting cell being a "ghost", i.e. a RBC reduced to its 
membrane only. On the contrary, above normal osmolarity, RBC volume is 
reduced, leading to formation of an echinocyte, the shape of which (reminiscent of 
sea-urchin one) is closely related to the actin-spectrin network. Further increase in 
salt concentration leads also to cell hemolysis. 

Plasma proteins. Plasma proteins are mainly albumin and globulins which 
control water exchanges between blood and tissues by their action on osmotic 
balance. The remainders are Iipoproteins and fibrinogen. The latter is known for a 
long time as playing a very important role in blood clotting. However, it was more 
recently recognized that, in normal conditions, fibrinogen (and in less extent 15- 
globulins) is strongly involved in reversible aggregation of RBC to form rouleaux 
(see Fig.l.3). We will see later that such a process is one of the fundamental 
determinants of blood rheology. 
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Clot t ing and Platelets. Whole blood reacts if it is put either in the 
presence of air oxygen or in contact with extracorporeal surfaces. In vitro, a clot is 
formed which mainly consists of a complex imbricated stucture of RBC and 
filaments of fibrin, which derives from fibrinogen by polymerization. After complete 
formation, a very slow clot contraction occurs, which ressembles syneresis, a 
similar retraction observed during gelation of colloids. On the other hand, in vivo 
clotting is governed by platelet activation, which promotes (irreversible) thrombus 
formation and/or platelet adhesion on (eventually injured) vessel wall. 

Fig. 1.3 - Rouleaux of Human RBC 

1.2- Blood Flows and Hydrodynamic description. 
Three main classes in blood circulation can be distinguished, according to 

the value of the vessel diameter to particle size ratio, ~=2R/2a. 
a). Blood can be considered as a continuous medium only at the macroscale 

(i.e. in large arteries ~>~50, on the inside of which flow pulsatility promotes 
important deformations of vessel walls, hence leads to prior effects of (non-linear) 
visco-elasticity of vessel walls; idem, in less extent, in large veins, due to effects of 
external pressure and gravity). The effective (bulk) viscosity of blood is 
approximatively newtonian (however ~dependent). 

b). On the contrary, blood appears quite heterogeneous at the microscale 
(i.e. in small capillaries, with ~<-1, and the flow description reduces to solve the 
problem of transport of deformable capsules (as non-linear viscoelastic bodies) 
immersed in a newtonian fluid (plasma), in presence of "rigid" walls 
(Gaehtgens, 1979; see a recent review by Skalak, 1990). 

c). The situation is more complex at the mesoscale, i.e. in small arteries and 
veins, arterioles and venules, -5<~<-50,  where two kinds of structural effects 
appears: (i) the presence of RBC rouleaux, likely forming at rest a (labile) network 
due to rouleau branching and (ii) existence of plasma layer, close to the wall 
vessels, that rends the system macro-heterogeneous. Indeed, a kind of phase 
separation occurs, with formation of a particle rich axial core, surrounded by a 
particle depleted wall layer. Poiseuille (1835) was the first who observed such a 
separation, findings which were more or less considered as artefacts untill the 
quantitative studies of Farhaeus and Lindqvist (Farhaeus,1929; Farhaeus & 
Lindqvist, 1931) who established the existence of a viscosity lowering as the vessel 
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radius is reduced. This lowering mirrors directly lubricating effects resulting from 
the presence of the plasma layer. The presence of an endo-endothelial fibrin lining 
(Copley,1984) is believed to enhance the lubrication. A continuous description of 
this "diphasic annular flow" can be recovered if one considers each phase as 
homogeneous. 

Such a description provides a framework for coherent interpretations of 
"anomaleous" features that blood flows through small vessels exhibit : in addition 
to the Farhaeus & Linqvist effect, many studies contain observations of (i) mean 
(tube averaged) hematocrit lesser than the (feed) reservoir one (the so-called 
Farhaeus' effect) (e.g. Cokelet,1976; Stadler & a1,1990); (ii) blunted velocity 
profiles, near the vessel axis, that mirrors the non-newtonian properties of blood 
at this scale(e.g. Dufaux & al, 1980). 

1 . 3  - Blood Viscosity (steady shear viscosity). 
Apparent shear viscosity, measured in Couette rheometers, is found non- 

newtonian. Under steady conditions, blood behaves as a shear-thinning fluid, in 
close relation with levels that RBC Aggregation (RCA) and Deformation (RCD) 
reach. Both processes are strongly dependent on physico-chemical properties of 
plasma, cell membrane and cell content. This was clearly demonstrated more 
than twenty years ago (Chien, 1970) in comparing the following RBC suspensions 
at same hematocrit (H=.45), here refered as (NP), (NA) and (HA), that means 
respectively 

(1) (NP)=Normal RBC suspended in Plasma, where rouleau formation is 
promoted by fibrinogerl (and 13-globulins) 

(2) (NA)=Normal RBC suspended in Albumin-Ringer solution, without 
detectable RBC aggregation 

(3) (HA)=Hardened RBC (by glutaraldehyde) suspended in the same 
Albumin-Ringer solution 

1 0 0 0  

,<.NP 
lOO H A  

C~ 01 A Deformation I 
10 . . . . .  o " 0 - - 0 . . . ~  ~,i..._ 4... ] 

M A ~-"~'" ~--~:~.~Or ient at Ion 

. 0 1  . 1 1 1 I 0 0  I 0 0 0  

Fig. 1.4 - Relative apparent viscosity vs. shear rate 
in (NP), (NA) and (HA) suspensions of RBC. -(from Chien,1967) 

The albumin concentration in (NA) and (HA) was chosen in order to obtain a 
suspending fluid viscosity qF equal to the plasma viscosity (here, qp=1.2oP), hence 
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getting the same shear stress a acting on RBC at a given shear rate ~,. The 
corresponding rheograms ,1 = rl(~') are shown on Fig. 1.3. 

These results led to distinguish between two fundamental processes in 
blood rheology, 

a) reversible Red Cell Aggregation (RCA) at low shear rates, which 
gives a large increase of NP viscosity as compared with the corresponding NA 
viscosity, 

b) Red Cell Deformation (ROD) and correlative orientation (RCO) 
at high shear rates nevertheless small enough to avoid any hemolysis effect, 
protein degradation and/or hydrodynamic instabilities or turbulence onset. 
These processes lead to observe (i) same low values in (NP) and (NA) viscosities, 
as compared to the higher value of (HA) viscosity and (ii) identical high shear 
viscosities for (NP) and (NA), that confirms reaching a complete dispersion of 
rouleaux under shearing in (NP), with same RCD (and RCO) under the same 
shear stress (due to rlp=rlF). 

Anticipating our goal in modelling blood rheology, we may underline main 
features from these findings: the viscosity vs. shear rate curve exhibits same 
general characteristics of concentrated dispersions of small particles (size - ]~m) 

(i) two "viscosity plateaux" qo and q~o both volume fraction dependent, q=q(~b), 
(ii) a critical shear rate t'c (e.g. the ~,-value at the inflexion point, ~,i ) 
(iii) a characteristic slope s c (e.g. s =s i at ~, = 1'i ) 

showing that rheological modelling requires a minimum number of 4 parameters. 
A large amount of work (of course, references given hereafter do not 

constitute an exhaustive list!) has been devoted to direct studies of RCA and 
RCD, mainly by optical measurements [as microscopy with imaging (Paulus & 
al, 1986), light transmission (Schmid-Schonbein & al, 1972; Thurston, 1990), laser 
back-scattering, especially in the presence of shear (Mills & a1,1980)], acoustic 
measurements [ultrasound back-scattering_ (Boynard & Hanss,1981; Boynard, 
1986)] and mechanical measurements [micropore filtration (Hanss, 1983; 
Bucherer & a1,1988), micro-pipette apparatus (Evans & La Celle,1975)]. These 
methods provided quantitative evaluations of RCA and ROD, in both steady and 
unsteady conditions. In some studies, these evaluations were experimentally 
correlated to stress measurements (Snabre & al, 1987). The main problem is to 
insert such a microscopic knowledge into a macroscopic model of the whole 
system. Of course, as the problem remains unsolved, even in the simplest case of 
concentrated suspensions of rigid spheres, the question is still open. 

Factors governing RCD and RCA are briefly listed hereafter 
++ RCD & RCO raises if we increase: 

(i) shear stress (hence either suspending fluid viscosity or shear rate, or 
both), that results into cell alignment in the flow direction 

(ii) hematocrit, due to enhancement of crowding effects and increasing of 
effective shear rate between adjacent cells 

(iii) pH and ionic strength of plasma, giving changes in cell deformability (e.g. 
echinocytes less deformable than normal RBC) 

(iv) intrinsic deformability of cell, which depends on membrane elasticity, 
viscosity and physico--chemical properties of internal fluid (e.g. drepanocytes, with 
abnormal hemoglobin molecules whose rigidity is strongly increased under low 
oxygen pressure, that constitute the prior cause of the "sickel--cell disease) 
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++ RCA mainly depends on 
(i) shear rate, which promotes opposite effects (aggregate formation from 

"hydrodynamic" collisions and aggregate rupture by shear stresses) 
(ii) physico-chemical properties of suspending fluid (essentially ionic and 

macromolecular content) and mechanical properties of the cell membrane (since 
RBCs in a rouleau are deformed). 

Rouleau formation involves competitive interactions between adjacent cells, 
essentially (i) repulsion, either electrostatic one, thus leading to RCA level 
variations with ionic strength (see Fig.l.5) or steric one (between polymer chains 
adsorbed on the cell membrane, in the presence of a good solvant, and (ii) 
attraction from either macromolecular bridging (Chien & a1,1971c; Chien& 
Jan, 1973) or polymer depletion (as in colloids, e.g. Sperry & al, 1981), the question 
is still open. 

Number of studies on cell adhesion due to macromolecular bridging, from 
either a thermodynamic approach (e.g. Bell, 1978, Bell & al, 1984) or a model 
based on coupling elastic deformation of the cell membrane with chemical kinetics 
of the adhesion molecules (e.g. Evans, 1985, Dembo & al, 1988). A recent review 
(Skalak & Zhu, 1990) incorporates both the macroscopic viewpoint (which only 
introduces an adhesion energy, without details at the molecular level) and the 
microscopic one (including kinetics of bond formation and disaggregation, 
viscoelasticity of cross-bridges and their lateral mobility, resulting from either 
diffusion or peeling induced sliding. 

Substances, as drugs, which modify the equilibrium between repulsive and 
adhesive forces, will act as either aggregative or anti-aggregative agents. For ex. 
Aspirin induces a strong lowering in low shear viscosity (Fig. 1.6). 

However, respective roles of RCA and RCD depend on the vessel size. In 
larger arterioles, RCA dominates and gives the above-described annular flow. As 
the size decreases, RCD becomes more and more important, giving in pre- 
capillaries (or in post-venules) an axial file of cells. Tese cells exibit the so-called 
"tank-treading" motion, i.e. a continuous rotation of cell membrane around its 
cytoplasm(Fischer & Schmid-Schonbein, 1977; Fischer & al, 1978). Characteristics 
of this motion allows estimating of intrinsic mechanical properties of the RBC 
membrane[Sutera & al, 1989]) 
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Fig. 1.5- Relative viscosity vs. shear rate for washed human RBC suspended in 
saline at the ionic strengthes indicated. H=(50-+.2)%, 3gr/100ml of Dextran70, 

T=25°0. -(from Brooks & al, 1974) 
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Fig. 1.6- Apparent viscosity vs. shear rate of normal and disaggregated blood. 

(from Healy & Joly, 1975) 

Some evidence of normal stresses in blood exists. Moreover, elongational 
flows (hence elongational viscosity) are involved in blood circulation. 
Nevertheless, experiments are few and modelling almost absent. 

1 . 4  - Time dependent effects (thixotropy and visco-elasticity). 

As time dependent effects occur in blood flow in vivo (through pulsatility, 
vasomotricity,...) measurements of unsteady viscosity have been recently 
developped. 

Under unsteady conditions, the rheological response (as stress relaxation in 
transient tests, or linear viscoelasticity in oscillatory experiments) not only mirrors 
RCA and RCD levels, but also RCA and RCD kinetics. 

S t ress  Relaxat ion.  Fig. 1.7 displays the different flow curves (shear stress 
vs. time curves), o=a(t), in response to increasing ";,-steps in coaxial Couette 
viscometer and effects of adding a disaggregative agent (aspirin), that leads to 
lowering in RCA, on these curves. 

O'(arbitrary units) 

"~ =.O5 
~= . 2 sec-~ 

Time 

Fig. 1.7- Time curves o(t) [ normal blood,-- - id. + salicylate]. 
(from Healy & Joly, 1975) 
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Fig. 1.8- Illustration of structural changes in normal blood, during 
stress formation and stress relaxation experiments.(from Joly & al, 1981) 

More precisely, Fig. 1.8 displays differences between two flow curves, one in 
the case of very small y-amplitude (i.e. linear viscoelastic, without any "overshoot' 
in the response) and the other for higher amplitude (with an overshoot in the 
response). Expected structural changes "associated" to successive phases are 
illustrated on Fig.l.8, showing the major importance of RCA in the observed 
unsteady behaviour. Moreover, still related to RCA, time dependence of plasma 
layer thickness should be predicted. Such expectations seem in agreement with 
recent light transmission studies (Thurston, 1990). 

In summary, we have to keep in mind the main following properties of blood: 
(i) blood essentially behaves as a highly concentrated suspension of RBC, in 

which reversible RCAggregation and RCDeformation play very important roles 
(ii) kinetics of formation and rupture of cell aggregates governs the blood 

rheology at low shear rates. Kinetics of deformation-orientation of aggregates and 
of RBC plays an increasing role as shear rate is increased. 

(iii)phase separation leads to a two-phase annular flow in small vessels 
Such three "ingredients" should be of chief importance in blood modelling. 

2. BLOOD AS A CONCENTRATED DISPERSION" 
Effect of particle concentration. 

The particulate nature of blood suggests to begin with basic rheological 
models of concentrated suspensions and emulsions as a first approximation in 
blood rheological modelling. As up to now no exact theory of such concentrated 
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media is available, we will discuss some conditions for the existence of two-phase 
flows and the consequences of applying a minimum principle to energy dissipation 
in such two-phase flows. 

2.1 - Phase separat ion.  
The presence of marginal layers in blood flows appears as a general 

feature, currently observed in number of systems. In non-homogeneous velocity 
fields, a flow-induced particle migration (of course, in absence of any direct 
particle-wall interaction), has been postulated as being responsible of this phase 
separation, although the origin of such a migration still remains conflicting in the 
absence of inertial effects. In the case of a polymer solution flowing through a pipe, 
one could expect that macromolecules migrate radially towards the tube axis in 
order to maximize the configurational entropy of the system, since the higher level 
of orientation is reached in the highest velocity gradient region, close to the tube 
wall. Such a speculatidn was quantified in the case of very dilute solutions (Tirrel & 
Malone, 1977), but a more general calculation (Aubert & Tirrel, 1980) showed that, 
under the molecular assumptions used (i.e. a bead-spring model with zero bead 
volume), this kind of "thermo dynamical lift" does not occur in unidirectional non- 
homogeneous flows (channel and tube flows). On the contrary, considering finite 
size dumbells led to predict cross-stream migration in such flows (Brunn & Chi, 
1984). 

For concentrated systems, however, the existence of such a migration is 
open to question. Some recent approaches on dispersions of deformable 
particles, based on Thermodynamics of Irreversible Processes, discovered extra- 
terms directly associated with particle deformation, which could be responsible of 
the expected migration (Lhuillier, 1990; Onuki, 1990). In the case of rigid particles, 
aggregate deformability could play a role similar to the particle one. 

Moreover, as the particle accumulation in the low shear region (close to the axis), and 
the corresponding particle depletion in the high shear region (close to the walls), should tend 
to increase the difference between the suspension viscosities in these two regions, we can 
expect to observe a flattening in the velocity profile. Such a flattening, in turn, will reinforce the 
viscosity difference (here, the suspension is assumed to be a shear-thinning medium), that 
ultimately amplifies the flattening and promotes a new increase in viscosity difference (through 
enhanced levels in aggregation and/or in aggregate deformation and orientation, in the low 
and high shear regions, respectively), and so on .... up to reaching a dynamical equilibrium 
between the different sub-units forming the internal structure of the suspension. We believe 
that, in concentrated systems, such effects could increase the difference in configurational 
entropy between wall and axial regions and allow us to postulate the existence of a cross-flow 
force as resulting from the non-homogeneity of the flow field. Moreover, in the case of 
deformable particles as droplets or cells, a radial drift in tube flows have been observed 
experimentally (Karnis & al, 1966) 

If, in the presence of heterogeneous flows characterized by a spatial 
variation in shear rate ~,, a lift force of the form (15/2)V~, ~ (from symetry 
arguments) is postulated, we are able to analyse the flow stability of a 
homogeneous suspension (with a given volume fraction ~=nvp, n being the 
number density and Vp theparticle volume). In the case of plane flows and if 15 is 
positive (e.g. if lift forces drag the particles towards the tube axis in a Poiseuille 
flow), density and shear rate fluctuations are found unstable (Nozi~res & 
Quemada, 1986) if the shear rate y exceeds a critical value 

Ycrit- (qp'/15q')l/2 (2.1) 
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where q is the viscosity and lJ, the chemical potential of the system, with f'-(df/dn) 
for any function of density n, f=f(n). 

Past this threshold, the original uniform state will break into domains: a first 
order transition appears, quite similar to the liquid-gas phase separation. In 
equilibrium state (that requires constant shear stress O=Oo and chemical potential 
~=lJo ), we will find, beyond Ycrit, two coexisting solutions (nl, ~'1) and (n2, ~'2) for 
each Co value. 

Fig.2.1 & 2.2 illustrate the main results, with a spinodal line (where the lJ- 
extrema A* and B* are located), a critical point C and a "Maxwell plateau" AB. We 
shall return later to these results, taking explicit n-dependences of p. and q. 

T/, m I 

),, 

O" 
Fig.2.1- Phase diagram o'(n) 
___ Spinodal line, with points A* and B* 
. . . .  Locus of stationary domains. 

Fig.2.2- Sketch of ~n) at fixed o'o 
The Maxwell plateau correspOllds 
to a stationary wall 

A recent Non-Equilibrium Molecular Dynamics (Loose & Hess,1989) led to a 
shear-induced ordering transition at a critical shear rate. These transition has 
been confirmed by linear stability analysis: past this threshold, coupled density 
and velocity fluctuations exhibit a velocity profile with shear minima corresponding 
to density maxima, i.e. plug formation. This more general approach could support 
the existence of the phase separation we found here as a consequence of 
assuming the presence of a lift force, although no prefered modes were observed 
in the NEMD data (see the Hess' I~cture in this issue) 

2.2 - M i n i m u n  e n e r g y  d i s s i p a t i o n .  
For non-inertial flows of incompressible newtonian fluids, it is well- 

established that, under given conditions, the solution of the Stokes' equation is 
unique and satifies a minimum energy principle for viscous dissipation (see for 
instance, Batchelor, 1970, p.227). 

Such a principle was assumed to hold in viscometric flows of dispersions, 
taking into account possible cross-flow variations in volume fraction 
(Lighthill,1969). As hydrodynamic interactions (and lift forces, eventually) couple 
flow and particle motions, a self-consistent solution -- that is, both velocity and 
concentration profiles v(r) and ~r)  - is expected to exist for fixed properties of the 
whole system (concentrations, temperature, suspending fluid characteristics .... ) 
and well-defined flow conditions (flow rates or pressure gradient .... ). Moreover, we 
assume that flow-induced structural changes can be described by a (structural) 
viscosity rl=q(~,~,), as a functional of ~ and .;,. 
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Consider ing for instance a pipe f low (0< r< R), minimization of the rate of 
energy dissipation per unit tube length is achieved from applying the variational 
method to a functional with Lagrange multipliers corresponding to the constraints 
associated to given flow condi t ions.  The resulting two Euler-Lagrange equations 
governs the coupled fields v(r) and ~(r) [Quemada, 1977]. 

If we assume the presence of the above-discussed phase separat ion (i.e. a 
d iphasic annular  flow, in the present  case), decoupl ing of E-L equat ions is 
obtained with constant volume fractions in wall and core regions, respectively. For 
the corresponding (newtonian) high shear limit (hence q--q(qS) only), these two 
equations then reduce to 
(i) Navier-Stokes equations for the classical two-fluid velocity profile (composed of 

two arches of parabola) ,  
(ii) an equation for the relative fluidity, F = rlF/q (the reciprocal of the relative 

viscosity), as a function of qS. 
The latter relates values of F and its derivative F '= dF/dq5 on each side of the 
domain wall (located at r=~R), i.e. in axial core (0< r< ~R, s subscript) and marginal 
layer (~R< r< R, w subscript) 

(F' s + F'w)(qbs-~ m) - 2(F s - F w ) = 0 (2.2) 

Eq.(2.2) can be solved in two limiting cases which correspond to the following one- 
fluid limits (cf. Fig.2.3): 
(i) an (infinitely thin) axial core,(~ --. 0), with ~s'~rn, a maximum volume fraction, 

that is a "packed"core (with zero fluidity) 
(ii) a (vanishing) particle free marginal layer, (~ ~ 1 ), with 4~=0. 

R 
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a) Packed axial core (~ --*0) b) Particle free marginal layer (~ ~ ]) 

Fig.2.3 - One-fluid flow limits. 

Let us add some comments on these limits. 
As a consequence of the (postulated) radial migration in pipe flow, we have to assume that 
particle (at low concentration) should begin to accumulate on the pipe axis and that 
superimposition of diffusive and lift forces should give, at higher concentrations, a @profile 
having a maximum on the axis. Therefore, increasing the (total) feed concentration qS, we 
can expect to reach some critical value ~ *  which corresponds to a packed core as a very 
thin file of particles on the axis, hence with qSs=qbm, the maximum volume fraction at rest 
(~s=O since rls=OO). As q5 grows beyond qb*, the core thickens at the expense of the marginal 
layer. This percolation-like transition at qS=~* appears of the same type than the one already 
postulated in channel flow of non interacting rigid spheres (de Gennes, 1979), althouth we 
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are only concerned here by percolation in the flow direction, not in the transverse one. 
Furthermore, as evidence, attractive particle interactions, if present, should greatly promote 
this percolation transition (in such a case, beyond ~*, the domain wall location, r=~R, with 
finite, will result from the balance between cohesive forces on particles forming an 
aggregate located at ~R and the shear stress the fluid exerts on it). 

On the other hand, the second limit could be associated to the structure invoked to 
explain wall slip phenomena, as discussed yet, with a very thin lubricant wall layer and a 
sheared axial core filling almost the whole tube section (Quemada, 1982). 

Packed core : 
From eq.(2.2), with F s = F(~)  =0 and assuming conditionally that F' s = F'(~)=0, 

F'w (~rn" ~Sw) + 2Fw = 0 (2.3) 

the solution of which is (with C=const.) Fw=C (@m-~Pw) 2 .As F w --,! if~Sw--, 0, we 
obtain 

F' w =(1-~w/@m) 2 (2.4) 

Par t ic le  f ree marginal  layer. 
For ~ = 0, hence F w = 1, eq.(2.2) becomes 

(F's - kl) @s + 2( 1- Fs) == 0 (2.5) 

where kl= lim~_,o(dF/d~)~=~ is the intrinsic viscosity which can be calculated from 
highly dilute suspension theory (e.g. Batchelor,1970), for instance for neutrally 
buoyant rigid spheres, the Einstein s result kl=kE=2.5. Integration (with K=Oonst.) 
leads to 

Fs= 1 - kl~s + K~s2 

For very diluted suspensions, the Einstein's limit (first order in ~) is recovered, 
qr=l+kl~.  To second order in ~, the integration constant K cannot be deduced 
from theory (Batchelor & Green,1972) which only gives the high f requency 
viscosity (without accounting for shear induced changes in the equilibrium 
distribution of particles, a problem still unsolvable) whereas we are here 
concerned with the high shear steady viscosity, except close to the tube axis. 

Nevertheless, it is worth noting that, in principle, this second limit (~ ---, 1) 
remains valid as ~ is increased up to ~s=4Pm (then giving the above-described plug 
flow, with a solid core sliding through the tube as a lubricated piston). If we assume 
that the function F(@ is unique and reaches the same limits F(~m)=0 and F'(~rn)=0 
we took yet for F w in the packed core limit, we have to put in eq.(2.6) K-~m-2 and 
kl=2~m -1. Then, exactly the same ~dependence in Fs(~b~) than in Fw(~5 w) is found 

F s = (1- ~s/~m) 2 (2.6) 

that could be considered as supporting a 
equation of the form 
F = (1- (~m)2 

possible general character of an 

(2.7a) 



1 7 1  

or, in terms of the relative viscosity fir, a relation of the type 

qr-- (1- ~rn)-q with q=2 (2.7) 

Such a general character already appears in the fact that eq.(2.2) for the general 
case of diphasic flows (with 0<~<1 ) is satisfied if we take of the form of eq.(2.7a). 

Furthermore, eq.(2.7) is reminiscent of expressions of transport coefficients 
found in critical phenomena theory, with q as a critical exponent. The "minimun 
dissipation" approach appears as a kind of mean field approximation through the 
integer value found here. 

Eq.(2.7) q=2 has been proved to be in fair agreement with number of viscosity 
data for rigid particle dispersions, especially in the case of (very well- 
characterized) suspensions of sterically stabilized silicate particles which were 
found to behave as hard spheres (de Kruif & a1,1985). This viscosity equation 
appears identical to the Krieger's phenomenological equation (Krieger,1972), 
qr=(1-;k~)'kl/x where ;k is the Mooney's crowding factor (which was introduced to 
account for excluded volume type effects). The exponent value kl/X is found from 
the very dilute (Einstein) limit. Putting X-~rn -1, this equation reproduces eq.(2.7) if 
one takes q=kl~ m . This relation also results from the condition F's(~m)=0 applied 
to eq(2.6) once K was fixed by the condition Fs(~m)=0. 

Using eq.(2.7) and classical expression for chemical potential, ~u=KBTLog(n), 
in eq.(2.1 ) leads to Ycrit " -  [KBT(qbrn-~)/13q~]l/2" The critical point (see Fig.2.2, point C) 
is defined by ~c = ~rn/2q, Yc = (2-q -1) KBT/~ . AS the point at which the phase 
separation disappears, point C must represent the above-discussed percolation 
threshold ~* (de Gennes,1979). Taking q=2 and qbm=.74 (for hard spheres) leads 
to ~c=.185, close to the critical volume fraction qb*=.18, corresponding to the 
percolation threshold in 3D structures built by randomly packed spheres (Powell, 
1979) 

2.3 -Application to Blood and Red Cell suspensions. 
As .40 < ~ < .45 and .25< ~ <.70 for normal and pathological blood 

respectively, using of viscosity equations for concentrated suspensions is 
uncontournable. 

The most applied one has been the semi-empirical Arrhenius equation 
which gives a linear dependence of Log(qr) vs qb, although this equation fails at 
>.30 and low shear rates. 

Application of eq.(2.7) to RBC suspensions is shown on Fig.2.3 for three 
different data, hardened RBC suspended in saline (Chien & a1,1967), in Ringer 
(Brooks & a1,1970) and in water (Chien & al,1971a), leading to slightly different 
values in ~m (i.e. ~m=.549 in water and ~rn=.583 in Ringer) which can be 
understood taking into account RBC swelling in each suspending medium. 
Indeed, the corresponding packing values are close to (i) ~m=.58 calculated for 
geometrical packing of hexagonal discoid cells enclosing undeformed RBC 
(Burton,1960) and (ii) to ~m=.60 found from sedimentation of hardened cells 
(Chien & al,1971b). Comparison with results of data fitting of the Brinkman- 
Roscoe equation (identical to eq.(2.7) but with q=2.5) is given for qbrn=.635 
(Cokelet, 1972). 
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Fig.2.3- Relative viscosity vs particle volume fraction of hardened cells 
suspensions - Data : hardened RBC (o) in saline ,(v)in Ringer and (n)in water. 

Curves : eq.(2.7) , Brinkman & Roscoe eq. - .... 

2.4 - Blood as a concentrated emulsion. 
Due to the very high deformability of normal RBC, modelling of blood as a 

concentrated emulsion has been proposed for a long time. As for suspensions of 
rigid particles, the very dilute limit is known (Taylor,1932), qr=l+klqb, with kl=Tk E 
where T=(kE;k+l )/(;~+1 ) is the Taylor factor, with ;k = q~/qF' the ratio of viscosities rl~ 
and qF of dispersed and continuous phase, respectively. However, such a result 
only holds in the limiting case if (viscous forces)/(surface tension) - qF ~ a/F<<1 
(with ['=surface tension), i.e. is only valid for small deformations, thus it cannot be 
applied to blood. 

On the contrary,recalling the observed "tank-treading" motion of sheared 
RBC, the membrane of which exhibiting a continuous rotation around the cell 
interior as a rigid body, we could regard each individual cell as composed of a 
hard core surrounded by a (more or less freely) rotating fluid shell. 

As a first approximation, assuming this shell forms a part of the suspending 
fluid, we could tentatively consider a suspension of dispersed RBC (i.e. at high 
enough shear rate) as a suspension of hard cores, hence with a reduced volume 
fraction, ~eff < q~. 
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Fig.2.4- Expected velocity field associated 
with the tank-treading motion of a RBC. 

Following the model of tank-treading 
motion (Keller & Skalak,1982; Sutera 
& a1,1989), and retaining an ellipsoidal 
rotating RBC shape ( v o l u m e  
V=47rab2/3), however assuming a 
finite extension o f  internal fluid 
rotation, we can estimate the reduced 
(no rotating) cell volume as 
V'=4=ab'2/3, leading to an effective 
volume fraction ~ef f= (~ (b ' /b )  2 = (~(1- 
eeff/a) 2, where eeff= 1-b'/b is the 
maximum thickness of the rotating 
layer. 

We shall return (§3.2) on this 
approximation. 

3. BLOOD AS A SHEAR-THINNING FLUID : 
Effect of shear induced stuctural changes. 

In the framework of two-phase flows, the observed non-newtonian blood 
viscosity could be simply related to shear dependent size of the domains the 
phase separation has produced, keeping the two phases as newtonian fluids (cf. 
§5). However, in the axial core of pipe flow for instance, shear induced changes in 
the "internal structure" likely occur, as resulting from either breaking (and forming) 
aggregates or modifying their microstucture. This picture has been confirmed in 
finding non-parabolic velocity profiles inside the axial core (see §5).Therefore, 
blood flow modelling must involve non-newtonian rheology for the dense phase. 

3.1 - Some general  aspects in rheo log ica l  modelling of sheared 
concentrated suspensions. 

Theoretical calculations (Russel & Gast, 1986) of the equilibrium distribution 
function in sheared suspensions, including brownian effects, remain limited to 
their linear viscoelastic properties and, for steady state, to the low-shear limit in 
semi-diluted media since only pairwise hydrodynamic interactions were taken into 
account. Hence, we need approximate approaches which incorporate structural 
effects in a general manner and with, as far as possible, basic concepts. 

We may distinguish four steps in improvement of any structural model. 
These steps correspond to either physical identification or choice of 
(i) a set of"structural variables" S~, i=1,2,3 .... which as evidence should depend on 

both time and mechanisms (especially shear induced ones) leading to building up 
or breaking down the structure 
(ii) kinetic equations which, through these mechanisms, govern the variables (S=) 

and should involve shear dependent rate constants (or characteristic times) 
(iii) shear rate (or shear stress) dependence of these rate constants which should 

also depend on other structural variables (as concentrations .... ) 
(iv) explicite Si-dependences of theological functions. 

Step I - We assume that the system is composed of NI+N2+N3... = N 
particles per unit volume. Nm means Nm aggregates of m particles (1< m _< N), 
homogeneously distributed in space (in each phase, if phase separation occurs). 
As high levels in volume fraction result in formation of clusters, the size of which 
should depend on flow conditons, the particle distribution in size could be 
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expected to contain the relevant information to describe the structure. In fact, such 
a structure characterization would introduce too many "micro-variables": only few 
of them - or, better, some averages of them - will have significant influence on 
macroscopic properties of the system, leading to a reduced set of variables, as 
either some moments of size distribution or/and some cluster characteristics (thus 
defined at the mesoscale). This reduced set is believed to constitute a (pertinent) 
set of structural variables. 

As such variables, we may retain, for instance, the average number of 
particles per aggregate 

p(t) = T__,mNm/T__,Nm = N/T_,Nm (3.1) 
rn=l ,N m=l,N m=l,N 

or the aggregated fraction, which can be expressed in terms of volume fractions 
4)A and 4), 4)A being the volume fraction of aggregated particles 

A(t) = T~mNm/N= (I)A/(1) (3.2) 
m=2,N 

However, as a primary consequence of clustering is to change 4)A into the 
corresponding effective volume fraction, 4)Aeff, which includes the amount of 
suspending fluid immobilized on the inside of aggregates, we have to take also the 
(shear dependent) ratio a(t) = 4)Aef#'4)A as a structural variable. If the mean 
compactness of m-aggregates is ~rn (that is the averaged solid fraction in any 
aggregate of m particles), we get 

a(t) = T__.(m Nm/~m) / T_,m Nrn "~Aeff/dPA 
m=2,N m=2,N 

Therefore, we can define an effective volume fraction for the whole suspension by 
dPeff= ~l"~Ae. , d~l=~'d~A being the volume fraction of individual particles, i.e. 

(I)eff = dp + (a-1)~A (3.3) 

where 

a = a(t) = ~A,~/A(t)4) (3.4) 

Generally, since a mirrors the ~dependence of aggregate distribution (in 
size, shape, internal structure...), it should depend on 4). Nevertheless, we may 
underline three special cases: 

(1) if ~m has the same value, say ~0 o , for all aggregates (as in very 
concentrated systems with ~0 o likely close to the maximum packing compatible 
with particle interactions), then (I)Ae, would reduce to 4)A/~0o, i.e. a = ~0rn "1 

(2) if the system is composed of very polydisperse individual particles which 
hence can form very compact aggregates (where voids between biggest particles 
are filled with smaller ones, and so on...), ~0 m should be close to one, for any m, 
leading to a = 1, hence ~bef f = 4). 

(3) if the m-aggregate has a fractal structure, ~m = m(D-3)/O, D being the fractal 
dimension. 

Step 2 - The more general expression for reversible kinetics of the above- 
defined system of N particles is given by the system of equations 
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dn#dt = (1/2)T_, ~Ai.J niq - T_, KA i'm ninm - ~,KDm'i'm-i nrn + 2,~_,KD i'i-m'm ni (3.5) 
i+j=m i=l,N i=l,rn-1 i=rn+l,N 

where n= is the number fraction NnVN of m-aggregates, ~A~,J the kinetic constants 
for addition reaction (i)+(j)-,(i+j) and KDs,i,J , the kinetic constant for disruption 
reaction (s)-, (i)+(j). In eq.(3.5), first and second terms correspond to the formation 
m-aggregate by addition of smaller ones and its disappearance by addition to any 
other, respectively. The last two terms represent the two kinds of formation and 
disappearance by splitting. 
As kinetic constants KAi'J and KDS,~,J should depend on sizes of i-, j-, s-aggregates 
entering the reactions, solving these equations is a tremendous task : solutions 
are known only in the irreversible case [then eq.(3.5) reduces to the well-known 
Schmoluchovski equation (Schmoluchovski, 1916)] and for constant values or very 
special dependences of kinetic constants (e.g. Friedlander,1984; Viksek & 
Family, 1967). Such predictions have been recently verified experimentally on 2D 
suspensions of macroscopic spheres (Roussel & al, 1989) 

Introduction of reversibility, through the two last terms in eq.(3.5), led to quite 
different solutions (van Dongen & Ernst,1984). Numerical results in 2D (Botet & 
Jullien,1985) established that, after a long enough time, the system reaches a 
steady state in which the aggregate, although fluctuating in shape, has a mean 
radius of giration independent of its initial configuration. Extension to reversible 
cluster-cluster aggregation were also studied and showed similar features 
(Meakin & Deutch, 1985). 

A recent application of eq.(3.5) -after slight modifications- was devoted to 
RCAggregation in blood (Murata & Secomb, 1988). A solution was obtained thanks 
to the following restritive assumptions on kinetic constants: 

(1) all ~:A~,J and ~DS,~,J are independent of i, j, s, thus reduced to common 
values KA and KD. 

(2) KA=K(~')S(~ ') , where K(~)=kl~, +k2 is a (shear dependent) collision rate 
and S(-~) a sticking probability such as S(-~)=I or S(,~)=(ts~) -1 according to ts~-<l or 
ts';, ---1, ts being related to some minimum value of the post-collision time required 
for aggregate formation 

(3) KD -k3 
The average aggregate size <p> was found increasing monotonically with time up 
to a limiting value <P>e for dynamical equilibrium. As a function of the shear rate, 
~u e !atter can be written <p>e =[1+(1 +2;k)1/2], where Z =KA/KD=(kl# +k2)S(~')/k3 #. 

cn a oepeneence was observed in fair agreement with experiments (see §3.2). 
Alternatively, mechanics of flocs under shear, especially equilibrium floc 

size as a result of cohesive and shear forces (Adler & Mills, 1979), including fractal 
structure of flocs as porous clusters (Sonntag & Russel,1986,1987) led to a 
(reduced) shear rate dependent floc radius (RJa -1) - yR "s with data fitted value 
s=.35 (close to s=1/3) and fractal dimension D=2.48 (close to the value D=2.5 for 
the Diffusion Limited Aggregation). The theory (Sonntag & Russel,1987) was 
shown in satisfactory agreement with data. Still considering fractal flocs, the 
rupture of which occuring if the shear force overpass some adhesive force (due to 
particle links in the breakage area) led to a similar expression (Mills,1985) 
however shear stress dependent, (RJa -1) = oR-s with s = 1/(4-D). That leads to 
s=1/2 for D=2, which corresponds to the (chemical) Cluster-Cluster Aggregation, 
has been found from theoretical grounds, see later, eq(3.9). 

In order to get very much simpler models, many authors took only one 
structural variable, either the number fraction of particles forming an aggregate 
(e.g. Denny & Brodkey,1962) or the number of links entering into the aggregated 
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structure, as in a chain of particles (e.g. Cross,19"65). For same aim of simple 
modelling, we may assume that processes involved in the reaction of building up 
and breaking down the aggregates are of the relaxation type, the number fraction 
(per unit volume) of aggregated particles, n A- NA/N = qSA/q5 = A(t) should obeys the 
equation 

dn~dt = (1-nA)Zr A - nA/-r D (3.6) 

where -r A and "r D are the (mean) relaxation times characterizing the formation and 
rupture of aggregates, respectively. (More generally, these times are associated 
to either organization or disorganization of the "structure", in a large sense, e.g. as 
orientation-disorientation processes). As evidence, assuming each process can 
be characterized by only one relaxation time could be though as a too crude 
approximation which should be replaced by a group of discrete times at least, if 
not a relaxation spectrum, as in polymers. Nevertheless, in presence of a steady 
shear stress which exerts given hydrodynamic forces on each aggregate, we must 
expect that aggregate sizes lie in a more or less narrow range of values, giving a 
(shear dependent) mean size, e.g. an "equivalent radius" R (as seen above from 
mechanical models of flocs), thus leading to a very reduced number of relaxation 
times. 

For the sake of simplicity, we will continue hereafter with the only two times 
TAand T D , as it occurs in the case of suspensions of non-interacting spheres. In 
steady state conditions (dnA/dt=0), the aggregated fraction number nA = Aeq will be, 
from eq(3.6) 

Aeq -(1 +0) q where 0 = TA/"r D = 0(y). (3.7) 

and a shear dependent effective volume fraction, from eq(3.3), 

¢~ff = ~ [1 +(o~- 1 )(1 +o)4] (3.8) 

S t e p 3  - In dilute suspensions of colloidal spheres of radius a, "r A is the 
(translational) brownian diffusion time(Smoluchowski,1916), and -r D can be taken 
as proportional to ~-1 (Goldsmith & Mason,1967) leading to write 0 = TgR/'r D = 
6~qFa3"~/KB T -- Pe,  the well-known P6clet number, with KB=BOltzman constant 
and T= absolute temperature. 

In concentrated systems, we may extend such a relation, in order to account 
for particles interactions, considering the suspension as an effective medium, i.e. 
changing the suspending fluid viscosity qF into the suspension one, q. Now, the 
product q~,=a appears in e, that justifies the shear stress dependence, not the 
shear rate one, many authors assumed (e.g. Krieger & Dougherty,1959), leading 
to write, as a dimensionless variable, {) = O/Oc, ac being a characteristic shear 
stress, proportional to KBT/a 3. On the other hand, this may shed some light on 
non-analytical -;,-dependence, found theoretically (e.g. Dhont & al, 1989; Perez- 
Madrid & Rubi, 1990, with 0_~1/2), at least on a limited ";,-range. Indeed, if a power 
law o=C~,P is taken as an approximation of the bulk shear stress in this range, a 
shear rate dependence of 0 is obtained 

0 = (Tc~,) p , p=1/2 (3.9) 
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"rc being a characteristic time, by definition closely retated to relaxation times "rA 
and "rD. That leads to 0=(Pe) 1/2 for hard spheres suspensions, in agreement with 
experiments (e.g. van der Werff & a1,1989). It is worth noting that the Pdclet 
number can be interpreted as the ratio of the work of viscous forces acting on a 
particle, W H , to thermal energy, KBT. Therefore, more generally, in the presence 
of a particular process (involving an interaction energy Wj), the dimensionless 
group "rc~' associated to this particular process can be taken as the ratio W H/Wi, 
thus giving us the characteristic time Tc, especially its explicit dependences in state 
variables, as temperature for instance. [As evidence, if the structure evolution 
involves several processes, the corresponding characteristic times, if their 
magnitudes lie on the inside of the "~-range of interest, will be taken together]. 

It is worthy of note that considering the system as a suspension of p=N/n 
fractal clusters (of mean radius R and fractal dimension D, with n single particles 
each) should lead to (~ff/~) = pR3/Na 3= (R/a)q, where q=3-D. Taking any R vs. "~R 
relationship (either from structure kinetics or from floc mechanics) will give 
(Quemada,1989) explicit dependence (d~ff/~)=f('~R), as in eq.(3.8). For instance, 
an expression of the form (R/a)=(l+~R-s) deduced from floc mechanics (see above, 
step 2)leads to (~ff/d~)=(l+~R-s)q, with s=4-D. For D=2, i.e. q=l, s=1/2, we recover 
the shear rate dependence close to that obtained putting 0 from eq.(3.9) into 
eq.(3.8). 

S t e p  4 - Finding the relation which gives the viscosity rl as a function of 
structural variables remains the main difficulty in most of phenomenological 
models of non-newtonian behaviour. In the literature, one of the simplest forms 
has resulted from (arbitrary) assumption that rl is a linear combination of the two 
fractions, stuctured and unstructured, present in equilibrium state. For instance, in 
a relaxation-type model, such an assumption would lead to rl =A nA+B(1-nA), the 
constants A and B being related to limiting q-values, at very low shear and very 
high shear, giving definite nA-values (e.g. nA=l and nA=0, respectively). 

In order to avoid this arbitrariness, we can enter the effective volume fraction 
defined in eq.(3.3) into the viscosity equation drawn from minimization of viscous 
dissipation, eq.(2.7) thus leading to 

fir = (1 - dpef#'d~m) -2 (3.10) 

where the ratio d~eff/~rn , with eq(3.8), can be written Kdp , where 

K = [ 1 +(cx- 1 )/( 1 +0)]/~bm (3.11) 

appears as a structural variable whose reciprocal value can be considered as an 
effective (shear dependent) packing fraction. In the simpler case cx=const., this 
packing fraction takes the limiting values ~o=Koo'l=~rn as ~ --, oo (i.e. 0 --, oo) and 
(l)o=Ko -2 =(~cx, as ~--,0 (i.e. O ---, 0), respectively. Written in terms of these limiting 
values, eqs.(3.10)and (3.11) become 

r l r  (1-K~) 2 (3.12) 

where K = Koo + (Ko-Koo)/(l+0) and 0=('rc~') 1/2 (3.13) 
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the corresponding limiting viscosities being 

q r o = ( 1 - ~ o )  -2 =(1-Ko(~) -2 and q~o=(1-~(~) -2 =(1-Koo~) "2 (3.14) 

Hereafter, we shall refer to eqs.(3.10-11&12) as the "structural viscosity model" 
(SV-Model). 
Alternatively, in unsteady conditions, with Kq5 = Gaff/qSm =[ 1 +((x- 1 )nA(t)]q5 ,we can 
use the reduced (structural) variable 

S(t) = (K-Koo)/(Ko-Koo) - nA(t) (3.15) 

then the structure-dependent viscosity can be expressed as a time-dependent 
viscosity 

rlrqroo [1- (1-×)S(t) ]-2 (3.16) 

where X = (1-~/q~o)/(1-~/~oo)= +(qroo/rlro) 1/2 (3.17) 

3.2 - Application to Blood and RBC Suspensions. 
A very large number of empirical models of non-newtonian blood viscosity 

are still used. However in model evaluation, some confusion results between more 
or less unsatisfactory modelling, on one hand, and dispersion in data due to 
physic-pathological variations from one to another patient, on the other hand. 
Some tentatives (sometimes not well-justified) to apply structural models 
established for other materials have been carried out, as for instance the Casson 
model (Casson,1959) already developped to model the plastic behaviour of 
suspensions of paint pigments and previously applied to milk rheology. Two 
rheological variables, as "material constants", enter the Casson equation 

01/2 = Oy 1/2 +(qo~,) 1/2 (3.18) 

the Casson viscosity qcas and the yield stress o v , both concentration dependent, 
Fair data fittings have been obtained (cf. Fig.3.1). Unfortunately, for RBC 
suspensions with different concentrations in fibrinogen (thus changing the 
cohesive force between RBC in rouleaux), Oy-values deduced from rheometry 
were found too large (at least one order in magnitude) if compared to expected 
ones from direct estimation of interaction forces between two RBC (Merrill & al, 
1965). 

Rouleau formation and equilibrium size under steady shear has been 
analysed with the kinetic equation, eq.(3.5) (Murata & Secomb,1988). Fair 
agreement with experiments (Shiga & a1,1983) was observed for the initial rate of 
rouleau formation. Unfortunately, these results --especially the shear  
dependence of <P>e - were not used for blood viscosity modelling, especially in a 
further study of flow of aggregating blood (Murata & Secomb,1989), that we shall 
discuss later (see §5) 

Applying the SV-Model to normal or modified blood (that can be easely 
obtained by temperature increase, or adding of chemical agents .... ) or to 
pathological blood samples (corresponding to a specific pathology) could be 
performed by data fitting. As remarkable constancy and reproduotibility are found 
in rheological parameter-values, ~ ,qSoo and To, for normal blood (especially for a 
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given individual, even on very long periods of time), comparison of parameter- 
values for pathological blood to the ones deduced from normal blood, as 
reference values, can be carried out in order to obtain blood characterization. 

I 
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Fig.3.1- Casson plot o 1/2 vs ~1/2 for whole blood (q5 =.40) and 
RBC suspended in defibrinated plasma (q5=.39). (Data from Merrill & al, 1965) 

Curves from SV-Model with rheological parameter-values 
Whole Blood ~o=.43 q5oo=1.11 T0=1.45 S 
RBC in defibr, plasma qbo=.51 qboo = 1.11 Tc=0.01 S 

Compared to the Casson Model, which exhibits an infinite zero shear 
viscosity qo, the SV-Model involves finite qo-values (see Fig.3.1). However, the 
Casson law is exactly recovered if rlo~OO, i.e. X~0 in eq.(3.17), with S=Seq =(1+0) -1. 

From S.Chien's data (Cf. Fig. 1.3), Table 3.1 gives the values of ~ ,qt~o and To 
after fitting eqs.(3.12-13) on data of NP, NA and HA suspensions. These values 
suggest the following interpretation (as a renewal of previous ones, Quemada, 
1978) involving RC-Aggregation, RC-Deformation and RC-Orientation: 

a) In (NA), zero shear packing (~o(NA)=.608 corresponds to suspension at rest, 
without neither aggregation nor deformation effects. Hence packing of hardened 
RBC have to take the same value. Indeed, that occurs by centrifuge of chemically 
hardened cells, that leads to packing qSo=.61-+.01(Chien & al,1971b). This fair 
agreement seems significant, since deformation of normal cells by crowding (in 
(NA) at rest) can be expected small enough to be neglected, with same order of 
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approximation in neglecting hardened cell deformation under high speed 
centrifuge. 

b) In (NP), zero shear packing ~1>o(NP)=.476, lower than ~(NA) results from RCA. 
At rest, branching of RBC rouleaux likely promotes the formation of a gel-like 
structure, although very labile, due to the very low interaction energy between 
RBC (that corresponds to a vanishing small yield stress, see Fig.3.1). Here we 
assume such a structure is a 3D-network, with a mesh (a rouleau composed in 
average of n cells). The structural unit is a "3-rouleaux" (see Fig.3.2), the 
compactness of which would be to=3=/(2ren) 2 where re is the equivalent axis ratio 
of RBC as a disc, re=.26 (Goldsmith & Mason,1967). As the packing fraction of 3- 
Rouleaux in the "gel" is qbrn=l, we can take ~0=~= .476, that gives n close to n=l 0, 
in satisfactory agreement with the mean value from microscopic observation 
(Paulus & al, 1986; see also Fig. 1.2). 

TABLE 3.1- Rheological Parameters 
of RBC Suspensions 

cb=.45 qF=1.2 cP 
~o Boo To (sec) 

NA .608 1.124 .04 
NP .476 1.124 .2 
HA .552 . . . .  

, - ¢ # ; - , ~  , 

Fig.3.2-The "3-Rouleaux 
structural unit 

c) Identical high shear packings are found in (NA) and (NP) ,  
~oo(NA)=~oo(NP)=l.124, as expected since both suspensions are composed of 
wholly dispersed normal RBC, with identical deformation induced by suspending 
fluids having the same viscosity rlF=1.2 cP. Such a packing-value, ~1>oo>1, cannot be 
understood as a actual packing but as reflecting a particle effective volume 
smaller than the true one, as we suggested here-above ({}2.4) due to RBC tank- 
treading motion. Indeed, if ~' is the effective volume fraction of rigid cores and ~'rn 
their packing , we may write ~boo=~'rn(1-eeff/a) -2 . Taking ~'rn=.58 and qboo=l. 124 
leads to a maximum thickness of the rotating layer thickness eeff less than 30% of 
the cell radius, hence a about six times the RBC membrane one. This is a 
plausible value as a penetration depth of the layer rotatory motion (including the 
RBC membrane thickness. 

d) High shear packing of RBC in (HA), (~(HA)=.552, iS lower than the closest 
packing of undeformable and non-aggregating RBC(i.e. ~o(NA)=.608). This 
lowering can be considered as a consequence of shear-induced rotation of 
hardened RBC (which do not undergo tank-treading motion). These rotating cells 
then behave as equivalent spheres with an effective volume Vpeff=~Vp, where 
[;=2.52 for particles of axis ratio re=.26 (Goldsmith & Mason,1967, p.206) 
However, theory and experiments demonstrated that during its rotation, a disc 
spent more time with its faces aligned with the flow than normal to it. Considered 
as composed of no oriented cells (of volume Vp) and nrot=(N-no) rotating cells (of 
volume Vpeff), the suspension has an effective volume fraction ~ff=[l+(~j-1)arot]~. 
Taking ~;=2.52 and a=.5 (Goldsmith, 1971) leads to qSrn-~/qSeff=.568, close to (~oo(HA). 
On the contrary, at low y, almost all cells (no=N) exhibit impeded rotation (due to 
crowding at cl>>qbo=(-l=.40, Goldsmith & Mason,1967, p.206), thus giving (~)o(HA) 
close to ~o(NA)=.608. NOW, no decrease as ~, grows, leading to increasing HA 
packing. Such an increase in packing can be interpreted as a dilitant behaviour, 
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which has been found in concentrated 
suspensions of rigid spheres, either 
experimentally (Laun,1988) or from 
Molecular Dynamics (Bossis & 
Brady,1990) and already observed in 
suspensions of rigid RBC (Schmid- 
Schonbein,1975). (cf. Fig.3.3, with (cf. 
Table 3.2) data fitting values of the SV- 
Model in agreement with the given 
interpretation, especially ~oo < qb o i.e. a 
shear induced lowering in packing, with 
a high shear packing looser than the low 
shear one, in agreement with the 
dilatancy concept). 

TABLE 3.2 Rheological Parameters 
RBC Suspensions 

Normal (N); Crenated (C); Rigid (R) 
Go Boo Tcc=cl 

(N) .40 .41 1.01 1.08 
(C) .40 .44 .76 .78 
(R) .39 .62 .50 1.34 

Fig.3.3-Effects of RCDeformability on apparent viscosity vs. shear rate 
(RBC suspended in plasma) 

of 

e) As in the present model, we have assumed possible to characterize each 
reversible process responsible of changes in structure by only one characteristic 
time, values 1"c(NA) and Tc(NP) are more difficult to be interpreted. As RBC (and a 
fortiori, rouleaux) are too large particles to exhibit significant brownian motion, 
these times are likely close to Maxwell relaxation times for non-rigid particles, here 
directly related to cell membrane viscoelasticity (and internal fluid properties). 
Indeed, Tc-values about .2-.3 were found for TM=qi/Gi, taking viscosity ql and 
elasticity modulus G= from data of shear and swelling deformation (Skalak, 1976) 

4. BLOOD AS A THIXOTROPIC AND VISCOELASTIC FLUID" 
Effect of the t ime-dependent Structure 

4.1 - Model l ing of th ixotropy and non-l inear viscoelast ici ty 
As dynamical equilibrium between structured and unstructured states was 

postulated to explain shear thinning behavior, thixotropy directly results from 
structure kinetics: if, for instance, a step function in shear rate is applied to the 
system in given steady conditions, the passage from the initial steady state to the 
final one should require a structural change, the time dependence of which is 
governed by the relaxation processes involved in the kinetic equation(s). As a 
consequence, shear viscosity becomes time-dependent, that is called thixotropy, 
which is by nature, closely related to the shear thinning behaviour observed in 
steady state. We do not therefore necessitate new ingredients in the previous 
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models although we need now at least two relaxation times, as T A and -r D instead 
of, (in the steady case), only one characteristic time -r c related to the ratio of the 
formers. Nevertheless, additional effects could result from time dependence of the 
"macrostructure", for instance the time-dependent plasma layer thickness in two- 
phase flows (see e.g. Thurston, 1990) and should require specific modelling. 

However, intantaneous (reversible) deformation can be supported by the 
structure before to be broken down, that involves its pure elastic properties. 
Therefore, under unsteady conditions, the material exhibits the general features 
of viscoelastic materials with both stored energy (by deformation) and dissipated 
energy (by creeping flow). For dispersions of weakly interacting particles the 
domain of linear viscoelasticity often appears vanishingly small and both 
(retarded) elastic deformation and rupture or formation of the structure may be 
superimposed (i.e. leading to non-linear viscoelasticity). 

Linear viscoelasticity 
Linear viscoelasticity modelling is performed using mechanical models, as 

more or less complex networks of springs and dashpots. For fluid behaviour, the 
(simplest) one is represented by a Maxwell element (in series, a spring -with an 
elastic constant G, as shear modulus- and a dashpot -with friction q, as viscosity-) 
It is governed by the "Maxwell equation" G-ldo/dt + q-lo = ,~. Applying to the 
medium at rest a step in shear rate gives the stress relaxation 

o(t) = q ~, [1- exp(-VTM)] (4.1) 

in good agreement with experiments when the y-amplitude is low enough to 
preserve linearity. In eq.(4.1), TM=q/G is the Maxwell relaxation time. More 
generally, a "n-component Maxwell fluid" (i.e. n Maxwell elements in parallel) can 
be taken, in order to account for the existence of several relaxation times 
(sometimes a large number, i.e. a relaxation spectrum, as in polymers). Stress 
relaxation hence exhibits a non-exponential behaviour as resulting from 
superimposition of single element responses of the type (4.1). 

Non-linear viscoelasticity 
Alternatively, in order to describe non-linear properties, as thixotropy and 

non-linear elasticity, we can generalize the Maxwell equation -after adding a term 
"ro(d'~/dt) to account for retardation effects (i.e. for shear rate relaxation in creep 
experiments)-, considering the coefficients G-l, q-1 (and also the retardation time 
"r o) are structural-dependent variables. In order to account for possible plastic 
behaviour (with a yield stress Oy) we assume that the Maxwell equation holds for 
the shear stess difference o'= o - ( J y ,  hence leading to 

G -1 ([S]) do'/dt + q-1 ([S]) o'= ~, + "ro([S])d'~/dt (4.2) 

where [S] means a set of structural variables, which can be reduced, for the sake 
of simplicity (see §3.1 ) to only one scalar variable S=S(~,~,,t). The general solution 
of eq.(4.2) may be written in the form (with ~= d~,/dt) 

t i ' q  

o(t) = Oy + [o(0)-Oy]eXp[-F(t,0)] + _lG(t')exp[-F(t,t')][~(t')+ ro(t')~(t')]dt' (4.3) 
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where 

t 

F(t,t') = j~G(t")/q (t")] dr' 

-1  
= ] s e C  

0 1 5 10 ~; s e e  

10 

~'(~a) 

(a) 
-1 ~ = 0.05 sea 

I 5 I0 o 1 5 l'e ' t  s~c 

Fig.4.1- Theoretical curves for stress formation and stress relaxation: 
effects of -rA-variations (1"M=. ls; m=l) 

TA-values: (a)=10s; (b) = 5s; (c)= 2s; (d)= ls; (e) = .5s 
(SV-Model steady parameters: ¢=.45; qp=lmPa.s; qoo=5mPa.s; qo=.5Pa.s; 

Tc=.5S; Oy=lmPa) - (from Quemada & Droz,1983) 

Comparing this solution to constitutive equations o =o(t) of the integral type 
in theories of non-linear viscoelasticity, it is worthy of note that the function 
G(t')exp[-F(t,t')] works like a memory function. Indeed, the linear viscoelastic 
solution (cf eq.(4.1)) is recovered since exp[-F(t,t')] reduces to exp[-(t-t')/'r M] if the 
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ratio rl(t)/G(t) is constant, (q/G)=T M . Moreover such a form G(t')exp[-F(t,t')] is 
reminiscent of many expressions several authors (e.g. Meister,1971) proposed for 
the memory function,which can be written in the general form 

t 

m[t,t',ll(t')] = ~ Geexp(-fM[ll(t'),-rp] dt') (4.4) 
p=l ,N f 

where II(t) is the second invariant of the deformation rate tensor and -rp a 
spectrum of relaxation times. 

A basic difference between the memory function in eq.(4.3) and the one 
defined in eq.(4.4) lies in their time dependences. Through M, the latter only 
depends on II(t), i.e. the given shear rate history. On the contrary, through q(S), 

O'(~a) 
6o (~) 

= I sec 

4O 

-" ~ ( d )  
20 e) (r) 

(e)  

i , i 

-D- t sec o 2 6 1o ]~ o 2 6 1o ]~ 
G "(==a) 

I f ' ,  
l o ~ 1 \  " o s~c -1 

0 2 6 10 lb, 0 2 6 10 l'h ~ • see 

Fig.4.2-Theoretical curves for stress formation and stress relaxation: 
effects of -rM-variations ('rA=2S; m=l) 

rM-values: (a)=.01s; (b)=.05s; (c)=.ls; (d)=.2s; (e)=.5s; (f)=ls 
(SV-Model steady parameters values as in Fig.4.1) (from Quemada & Oroz, 1983) 

G(S) and To(S), the time dependence of 
the former results not only from the time 
dependent shear rate, i.e. II(t), but also 
from the structure kinetics which governs 
the material history in response to the 
shear rate one. We can say that the model 
based on the 

former introduces only one time dependent Maxwell time, rM(t) , as the ratio 
q(S)/G(S), instead of a permanent spectrum of relaxation times, Tp involved in the 
latter. 
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Fig.4.1 & 4.2 displays the variations 0(0 given by eq.(4.3), when we take q(S) 
from the SV-Model, eq.(3.15), and taking (in the absence of elastic model) G(S) 
from an empirical expression of the form GoS m , assuming all structural elements 
responsible of the elastic behaviour are broken down at very high shear rate 
(G--*0 as ~,._.oo). We can see how much the shape of these theoretical curves 
strongly depends on parameter values, although the unsteady model depends on 
a very small number of parameters. 

4.2  - Appl icat ion to Blood and R B C  suspensions 
Modelling oscillatory blood flow through small tubes has been proposed 

(Thurston, 1979) from a "(n+l )-component viscoelastic fluid" model (composed of 
n Maxwell elements and a dashpot, in parallel). Under sinusoidal excitation, ~,- 
exp(i00t), a dynamic viscosityis found 

q*= qoo+ ~ qk/(l+i~Tk) Tk=qk/G k 
k=l,n 

leading to the steady (shear thinning) viscosity as ~>0 ,  rls=q~ + A~_.~rlk . 
- -  k=l,n 

q' 
10-I 

- -°'-°- "°" °-o- --o~ 
Z~ -~,-.Z~__ ~ °-'0. 0 

10-2  _ " ,  "% q "  

",, k 

a_" ~,, 'o  

10  -3 - "t, b 
L% :,~ 

. 4H  ,~ 

o . 4 H + I ~ D x l 5 0  

10  - 4  , _.t~L.U.l.U ! , , . . . . . .  I 

10  -1 1 101 1 0  2 10 3 

Fig.4.3- Thurston's Data : Variations of rl' and q- vs. ~ and frequency 
Effects of increased RBC aggregation by adding of 1% of Dextran 150 

(4.5) 

In order to describe "the manner in which the model elements change with state of 
dynamic equilibrium", rlk and G k are assumed to depend on ~, according to 
qk=qokH(~"rk) and Gk=GokH('~rk ), with H(~"rk)=[l+(~'rk)21 A. Fig.4.4 illustrates a 
satisfactory data fitting obtained with 5 relaxing elements. However, taking the 
same degradation function H('~rk), hence constant Maxwell times, discards any 
proper dependence in time of the structure as in eqM.4). 

As underlined above, effects of time dependent structure are included in 
eq.(4.2) through the structure dependent quantities q([S]), G([S]) and To([S]). 
Therefore improvement of this non-linear viscoelastic behaviour requires prior 
modelling of viscosity, shear modulus and, eventually, retardation time, 
i.e.definition of a structural variable S, knowledge of its kinetics as S= S[~(t),t] and 
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Fig.4.4- Thurston's Model: Variations of qs, q' and q" vs. ~, and frequency 
Model parameters (five relaxation processes): 

Tk=l 0, 1,. 1, .01, .001 sec; qok=l, .32, .1, .032, .01 Poise; ,-ioo=.04 Poise, A=I 

cr (m Pa) 

/3= 5.1o -2 , e c - 2 / / " ' ~  

/ 

/ /  / ~  ~=5"I0"3se¢'2 
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Fig.4.5- Theoretical hysteresis cycles o(t) 
(in response to triangular steps in shear rate) -(Quemada,1984) 

Parameter values: TA=2 sec; "rM=. 1 sec; m=2; Oy=0 
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explicit forms of q(S), G(S) and To(S). Satisfactory data fittings were obtained 
(Quemada,1984) for stress formation and stress relaxation experiments on 
normal blood, using the SVModel, eq.(3.15), the relationship G(S)=GoS m and 
To(S)=To=Const. We show here an example of hysteresis curves as time curves 
o(t), (Fig.4.5), in response to linear .~(t)-growth immediatly followed by a symetric 
decrease, applied to normal blood. Values of all rheological parameters but T o 
were taken from steady and relaxation data fittings independently performed 
(Quemada & Droz,1983). In comparing these model curves to experiments, an 
early data resulting from same conditions was taken(see Fig.4.6). Using in the 
model same y-values than in experiment, only slight adjustment in T O were 
necessary to get maximum values of model curves close to experimental 
measurements. The agreement is satisfactory, taking into account the crudeness 
of the assumed elastic model. 

0.3 -O.(dyne/cm2 } Q 

O2 

® 
0.1 

® 

t(sec) 
0 

5 10 15 20 

Fig.4.6- Time curves o(t) of hysteresis cycles (triangular steps in shear rate) 
Normal blood Data (Bureau & a1,1978). 

o l  • I 2 • y-values~sec- I: (A): 5.10-3; (B): 1.45.10-2; (C): 4.2.10 -2 

5. MODELLING OF BLOOD MICROClRCULATION. 

In principle, flow modelling of any fluid through a given tube can be predicted 
once the rheological equation of this fluid, as a=o(~,~,t) is known. Number of 
studies has been devoted to blood flow modelling in cylindrical tubes, some of 
them taking into account the annular diphasic structure. 

In early works on blood flow through narrow vessels (e.g. Bayliissj 952; 
Haynes, 1962; Thomas, 1962), both phases were considered as newtonian, the 
core (0<r<l~R, with viscosity=q s) and the plasma layer (15R<r<R, with thickness 
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5=(1-13)R and viscosity=rip). The apparent viscosity is defined from the Poiseuille 
law applied to a one-fluid flow, i.e. riapp=~R4Ap/8QL. In terms of the relative 
apparent fluidity Fa---qp/'riap p and relative core fluidity Fs=ri~'rl s one get 

Fa=1-~4(1- Fs), (5.1) 

In the limit ~<<R, eq.(5.1)becomes napp=qp[1-4(5/R)(qF,/q-1)], which described 
qualitatively the Fahraeus-Lindqvist effect since in this limit 5 cannot depend on R 
(indeed, it should be close d-value in a flow along a plane). In normal blood, for 
"normal" conditions, 8-values were found close to about 0.Tpm(see for instance 
Middelman, 1972). 

Later, more realistic models kept newtonian the plasma layer whereas the 
core was assumed to be non-newtonian, for instance a Casson fluid (Charm & 
Kurland,1962; Charm & a1,1968). Although fitted 5-values obtained from 
numerous pressure-flow rate measurements were found rather scattered, the 
5=~(q5) variation exhibits the expected decreasing. Shear stress dependence 
5=5(a) was not clearly known. 

However, it is worth noting that, in the absence of any theory of the wall layer 
in concentrated suspensions, such approaches remain limited in interest. Indeed, 
since the plasma layer thickness 5(a) enters the model as an unknown variable, 
one will obtain from pressure-flow rate data the (ad-hoc) ~-value leading to the 
best data fitting, whatever the rheological model may be. As direct 5-measurement 
is often very difficult to carry out, this difficuty could be overpassed if simultaneous 
verifying of another prediction of the model was possible. 

Such a tentative was carried out in blood flow through narrow slits, 
comparing the predictions of the SV-Model to both velocity profiles (from Doppler- 
laser velocimetry) and pressure-flow rate data (Dufaux & a1,1980; Quemada & 
a1,1980). Eq.(5.1) ,with equation of continuity of the disperse phase 
~sQs=qba(Qw+Qs), led to a core volume fraction qbs-~s(13) if, for given slit thickness, 
pressure gradient and feed volume fraction q5 a , we equal the theoretical fluidity F a 
to the experimental one F a' (see Fig.5.1 ). A shear stress dependent plasma layer 
thickness 6(0) was obtained (Fig.5.1) which ressembles the similar variation ~(~) 
directly observed in capillary tubes (Devendran & Schmid-Schonbein,1975)hence 
leading to only qualitative agreement with measurements performed in very 
narrow slits. 

A very recent model (Murata & Secomb,1989) was based on a 3-phasic 
annular flow, composed of a rigid (aggregated) core (region C), surrounded by a 
suspension of single RBC(region S, with viscosity ris), both regions being 
surrounded by a plasma layer (region P, with viscosity rip). The model is 
oversimplified assuming the suspension is newtonian, with a viscosity given by the 
Arrhenius law, ris = rip exp(aqSs). The novel aspect in this model comes from a 
kinetic equation introduced for aggregated core formation. A very simple form was 
taken for this equation as governing the number of cells in the core, n c 

dn c/dt = Kg- K d 

where Kg and K d are growth and degradation rates of the core, respectively.The 
former was assumed proportional to the number of cells contained within a thin 
layer (of thickness of the order of the cell size) close to the core surface (at r=r c) 
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and to the shear rate at r=r c. The latter is proportional to (i) the core surface and 
(ii) the stress difference "rc-T o between the shear stress value T c at r=r c and some 
critical stress T o beyond which RBC aggregates are broken, if ~'c -> TO, whereas 
Kd = 0 ~TC-<T0. 
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Fig.5.1- Apparent fluidity F a' and Wall layer thickness 5 vs. shear stress o. 
Normal human blood flow (~a=.57) through a slit (350pm x 1.1cm x 10cm). T=23°C. 

Rheological variables (from Couette Viscometry): Ko=1.62 ; K~=.84 ; "to=. 135sec 
(o-Points from Fa-CUrve fitted on F a' -data ; a-Theoretical point from Fa-cUrve)- 

(from Quemada & al, 1980) 

A stationnary solution was discussed and compared to experimental data (Reinke 
& a1,1987). Despite the fact that model predictions for relative viscosity are 
consistent with experimental results, the many simplifying assumptions, especially 
a cell-free layer thickness independent of flow rate, made questionable the 
author's conclusions. Furthermore, it is a pity that instead of building this 3-phase 
model, these authors did not try to incorporate the aggregate model they 
developed (see §3.1, step2) into some structural model. In fact, the SV-Model 
(see above) with 2-phases, a (newtonian) plasma layer and a shear thinning core 
(with the possibility to have a rigid axial core, i.e. to change the shear thinning 
behaviour into a plastic one -the Casson limit-) does not appear very more 
complicated than the Murata-Secomb model and indeed, it gives a flow rate 
dependent plasma layer thickness, as schown on Fig.5.1. 

As evidence, it could be possible to built more complex models. 
Nevertheless, practice requires the knowledge of blood microcirculation in bulk, 
not limited to flow through an only tube, that rends of limited interest too 
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sophisticated descriptions of the latter. Even if strong simplifications are 
necessary, new classes of difficulties (here, we shall limit us to the main (physico- 
mechanical) ones) arise from: 

(i) geometry of vessels, as curvature, tapering and more especially 
branching, which leads to an averaged tube "length" (between two successive 
branchings) almost always too short to justify discarding of any entrance effects 
(these effects contribute to blunt the velocity profile). 

(ii) time dependence in "external" conditions, as driving pressure (a pulsatile 
one as resulting from superimposition of continuous and oscillating components; 
the larger the downstream distance, the smaller is the latter, that results into 
intermittency at the precapillary level) and vessel diameter (the vasomotricity, 
which is governed by number of control parameters which maintain constant vital 
functions, e.g. blood flow rate in the physiological range). It is worthnoting that 
viscoelasticity of vessel walls (essentially here small arteries and arterioles) are 
quite negligible. 

(iii) elongational effects, especially due to branching and only in part to 
(generally small) to vessel tapering. 

As a consequence, there is a great probability to overshadow a large part of 
the details introduced in modelling "one-tube" flow. Moreover, in measuring bulk 
properties of blood flow through the very complex microcirculatory network 
(necessarily including the (true) capillary network, for which we need another 
modelling, for single RBC rheology), On the contrary, due to the above-discussed 
variability, in both space and time, we expect some improvements could result 
from applying statistical methods (Guiffant & al, 1988; Arhaliass & al, 1989). 

6. CONCLUDING REMARKS 

Macroscopic behaviour of a material results in general from its properties at 
a smaller scale, sometimes microscopic. However, in most cases, large scale 
properties are not the simple addition of small scale ones: "collective" properties 
can be observed, which may be entirely new and necessarily involves a small 
number of (macroscopic) variables. In such a meaning, one may expect that some 
"universal" properties of disperse systems may exist and may be described by 
simple models. Therefore, Blood and RBC suspensions, as disperse media, 
should exhibit (at least in part) these "universal" properties, i.e. general models can 
be applied to them: in this lecture we moderately succeed in this goal, although 
some fair agreement in data fitting were observed and satisfatory physical 
interpretations were given. The more interesting aspect seems to lie in the phase 
separation (which lead to annular diphasic flow through a tube), not only because 
the lubricant property of the wall phase is of prior importance in practice, as 
reducing the resistance to flowing, but also as the existence of such a transition 
remains an open question. Furthermore, beyond the proof of a (particle depleted) 
wall layer, the problem of its time dependent properties should be solve in order to 
improve our understanding in measurements of non-linear viscoelastic properties 
of Blood and, more generally, of any disperse media. 
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INTRODUCTION 

To s t u d y  the  in f luence  of shea r  or ex t ens iona l  flow on the  misc ib i l i -  

t y  of l iquids of low molecular weight, high ly  s o p h i s t i c a t e d  a p p a r a t u s  is 

needed  or no e f fec t s  will be observed .  With polymer-containing sys tems,  

on the  o the r  hand,  dev ia t i ons  from the  equi l ibr ium behav io r  can be seen 

even  with the  naked  eye.  To the  knowledge of the  au thor ,  the  p ioneer ing  

work in th i s  field was done by A. Si lberberg and W. Kuhn 1,2, who 

repor t ed  t h a t  the  demixing, o b s e r v e d  with so lu t ions  of the  ( incom-  

pa t ib le)  polymers  p o l y s t y r e n e  and e thy l ce l l u lo se  in benzene  upon c o o -  

ling, can be sh i f t ed  to t e m p e r a t u r e s  abou t  10 °C lower by shea r  r a t e s  

t h a t  are  on ly  of the  order  of 200 s-L 

As long as two high molecular  weight  components  are  p resen t  in the  

mixture ,  t he  e f fec t s  are  p a r t i c u l a r l y  large,  bu t  even  with o rd ina ry  

polymer  so lu t ions  t h e y  canno t  escape  one ' s  not ice ,  for i n s t a n c e  in the  

v i sua l  de t e rmina t ion  of the i r  cloud points3: Depending on the p a r t i c u -  

lar  sys tem and condi t ions ,  the  demixing t e m p e r a t u r e s  measured  a t  res t  

and while s t i r r ing  di f fer  t y p i c a l l y  by a few t e n t h s  of a degree.  Some 

so lu t ions  become less  tu rb id  as t h e y  flow (i.e. t h e y  behave  like the  

above  so lu t ions  of  polymer  mixtures) ,  but  o the r s  become more cloudy.  

This means  t h a t  s h e a r - d e m i x i n g  is obse rved  in add i t ion  to shea r  d i s s o l u -  

t ion.  Meanwhile many  add i t iona l  examples  4-17 for the  e f fec t s  of  flow 

h a v e  been publ ished,  inc luding repor t s  on a f l o w - i n d u c e d  phase  s e p a r a -  

t ion  of polymer  mix tures  in the  absence  15 and in the  p resence  17 of  a 

so lven t .  

I t  s h o u l d  be no ted  in pass ing,  t h a t  the  d i v e r s i t y  of phenomena  

ou t l ined  above  is no t  only  of t h e o r e t i c a l  i n t e re s t ,  bu t  also of  g rea t  

p r a c t i c a l  i m p o r t a n c e .  This is p a r t i c u l a r l y  t rue  for the  mas te r ing  of the  

p rocess ing  of polymer  blends,  s ince it  is e s sen t i a l  to know whe the r  the  
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sys tem changes  from the  homogeneous  to the  t w o - p h a s e  s t a t e  or v i c e  v e r s a  

dur ing  ex t rus ion .  

The p r e s en t  pape r  repor t s  on t yp i ca l  exper imenta l  r e su l t s  and deals  

with the  ques t ion  how the  g rea t  v a r i e t y  of f indings  can be well enough  

u n d e r s t o o d  t h e o r e t i c a l l y  to perform p red ic t ive  ca lcu la t ions .  It  is c o n -  

f ined to s h e a r  flow and does no t  deal  with ex t ens iona l  flow. It  should,  

however ,  be no ted  t h a t  the  e f fec t s  of bo th  t y p e s  of  s t r e s s  and the i r  

q u a l i t a t i v e  t h e o r e t i c a l  exp l ana t i on  are  v e r y  similar.  

PROCEDURES AND OBSERVATIONS 

Methods 

In principle any measurable physico-chemical quantity that is suffi- 

ciently different for the phases formed upon the demixing of the 

solutions of present interest can be used to study the influence of 

shear. In practice, however, only the refractive indices and viscosity 

coefficients are used for this purpose. 

Optical methods Most of the early experiments were carried out with 

cells in which the flowing solutions can be seen. Silberberg and 

Kuhn 1,2 have used a Couette-type apparatus to shear their systems. The 

change from the homogeneous state into the heterogeneous state and vice 

versa was monitored by means of a specially devised optical method that 

utilizes the statistical addition of the deflections introduced into 

parallel light by the presence of drops. In similar experiments with a 

Searl-type shearing cell, the phase behavior of flowing solutions was 

measured via turbidity s,9,~2. In other cases the scattered light was 

used*% Sometimes the appearance 3,4,8 or disappearance 3 of cloudi- 

ness produced by shear was directly determined visually. 

Viscometric methods For polymer/solvent systems ~,e,~2,1v it is 

often far more convenient to monitor the entrance from the homogenous 

into the two-phase region by utilizing the discontinuities ~8 of the 

apparent viscosity q at a given shear rate 7 or shear stress 7q upon the 

variation of temperature or pressure. In fact it was with this method 

that shear-dissolution was (at elevated pressures) observed I~ for the 

first time. Although the changes in viscosity are normally less pro- 
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nounced  when polymer  mix tures  are  involved ,  t h e y  can also be used for  

the  s tud ies  of such  sys tems  ~2-~". 

As a consequence  of the  a l t e r a t i o n s  in ~ descr ibed  above,  a d i s c o n -  

t i n u i t y  is seen as one plots  the  t e m p e r a t u r e  inside the  shea r ing  cell 

v e r s u s  t h a t  of the  t h e r m o s t a t t i n g  fluid. This means t h a t  t he  e n t r a n c e  

in to  the  two phase  region can also be moni tored  by th i s  thermometr ic  

method ~2. 

E f f e c t s  

In the  following, t yp i ca l  e f f ec t s  obse rved  with the  shea r ed  so lu t ions  

of  one or two polymers  in a low molecular  weight  so lven t ,  and with 

polymer  mix tures  are  repor ted .  In the  case  of  po lymer / so lven t  sys tems ,  

the  demixing condi t ions ,  as de te rmined  from t u r b i d i t y  and v i scos i ty ,  

r e spec t i ve ly ,  d i f fe r  in the  region of h igher  shea r  r a t e s  12. It  t u rns  

ou t  t h a t  the  s eg rega t ion  of a second phase  is, under  t he se  c i r c u m s t a n -  

ces, de t ec t ed  a t  a l a t e r  s t age  in terms of inc reased  c loudiness  t h a n  in 

terms of reduced  flow r e s i s t ance .  

Po lymer / s o lven t  sys t ems  Fig. 1 shows an example 12 for t u r b i d i m e -  

t r ic  measurements .  The f r ac t i on  I/Io of the  i n t e n s i t y  Io of p r imary  

beam t h a t  pas ses  the  so lu t ion  a t  d i f f e ren t  shea r  r a t e s  is p lo t t ed  as a 

func t ion  of t empera tu re .  As can be seen from this  diagram, the  t r a n s i -  

t ion  from s l igh t ly  tu rb id  to n o n - t r a n s p a r e n t  t akes  place in a v e r y  

nar row T - i n t e r v a l  for the  p r e s e n t  c o n c e n t r a t i o n  at  all 7 va lues .  In the  

v i c i n i t y  of the  c r i t i ca l  point ,  however ,  th i s  range  can become much 

larger".  For s t a g n a n t  so lu t ions  the  opa lescence  wi th in  the  homogeneous  

region  was used to de termine  the  b inodal  t e m p e r a t u r e s  by means of  a 

genera l i zed  Debye plot  (ln(I/Io) v e r s .  T). The c r i t i ca l  composi t ion 

can t h a n  be ob ta ined  from the  minimum in ln(I/Io)bi.od.l as a 

f u n c t i o n  of polymer  concen t r a t i on .  

The f i r s t  i n s t a n c e  ~9 for an in f luence  of shea r  r a t e  on v i s c o m e t r i -  

ca l ly  de termined  demixing cond i t ions  is g iven  in Fig. 2. The e n t r a n c e  

in to  the  t w o - p h a s e  region upon app l i ca t ion  of  p ressu re  (not iceable  from 

the  r educ t ion  of  n as a r e su l t  of the  t r a n s f e r e n c e  of cons iderab le  

amounts  of polymer  into the  su spended  phase)  is sh i f t ed  by more t h a n  

100 bar  to h ighe r  va lues  i f  7 is only  modera t e ly  increased .  
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Fig. i:  Quo t i en t  o f  through l igh t  and r e f e r e n c e  l igh t  i n t e n -  
s i t y  (I/Io) as a func t ion  o f  t empera tu re  T for  a 4.24 wt% 
so lu t ion  o f  p o l y s t y r e n e  (Mw = 600 kg/raol) in t r a n s - d e c a l i n  
a t  the  d i f f e r e n t  i nd i ca t ed  s h e a r  ra t e s  u (Ph.D. thes i s  o f  1t. 
Kr~mer) 
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Fig. 2: Pressure  d e p e n d e n -  
ce o f  the  v i s c o s i t y  ~ o f  
an 8 v/t~ so lu t ion  o f  
p o l y s t y r e n e  (Mw = 110 
kg/mol)  in t r a n s - d e c a l i n  
a t  the  i n d i c a t e d  s h e a r  r a -  
tes19; a reduc t ion  o f  q 
upon an increase  o f  p i n -  
d i ca tes  demixing.  

The e s s e n t i a l  v i s c o m e t r i c  i n f o r m a t i o n  for  t he  p r o b a b l y  b e s t  s t u d i e d  

s y s t e m  t r a n s - d e c a l i n / p o l y s t y r e n e g ,  12 (TD/PS) is co l l ec t ed  in Fig. 8 in 

t e r m s  of ATvisc, t he  d i f f e r e n c e  of T?, t h e  demix ing  t e m p e r a t u r e  a t  

s h e a r  r a t e  % and To, t h a t  u n d e r  equ i l ib r ium cond i t i ons  (7 = 0). 
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rate ~,, and To e, the demixing temperature at rest, is 
plotted as a function of log ~" for the indicated polymer 
molecular weights and concentrations. The open symbols repre- 
sent viscometric and the filled ones thermometric I~ mea- 
s urea en ts. 

3000 

This  d i a g r a m  d e m o n s t r a t e s  t h a t  al l  pos s ib l e  p h e n o m e n a  can  be o b s e r v e d  

wi th  t h a t  sy s t em,  depend ing  on the  m o l e c u l a r  we igh t  M of the  po lymer  

(g iven  in i t s  a b b r e v i a t i o n  as kg/mol) ,  t he  c o n c e n t r a t i o n  of  th i s  compo-  

n e n t  in t he  so lu t ion ,  and  on the  s h e a r  r a t e  chosen .  For c o m p a r a t i v e l y  

low molecu l a r  we igh t  po lymer  (PS 100 and  less )  t he  p h a s e  s e p a r a t i o n  

t e m p e r a t u r e s  a r e  wi th in  e x p e r i m e n t a l  e r ro r  no t  changed  by  ?, i n d e p e n d e n t  

of  c o n c e n t r a t i o n .  For m o d e r a t e l y  la rge  M v a l u e s  (e.g. PS 600) ATvisc 

is n e g a t i v e  a t  a l l  s h e a r  r a t e s  unde r  i n v e s t i g a t i o n .  Under  t h e s e  c o n d i -  

t i ons  s h e a r - d i s s o l u t i o n  is t he  gene ra l  phenomena ;  t he  e f f e c t s  become 

more p r o n o u n c e d  a t  h ighe r  c o n c e n t r a t i o n s .  The c o n n e c t i o n  of the  m e a s u r -  

ing po in t s  in Fig. 8 to y ie ld  two i n t e r s e c t i n g  l ines  will be j u s t i f i e d  

in t he  t h e o r e t i c a l  sec t ion .  For v e r y  l a rge  M (> PS 1770), f ina l ly ,  
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ATvisc is p o s i t i v e  o v e r  t he  e n t i r e  r a n g e  of  7, i.e. the  s o l u t i o n s  

show s h e a r - d e m i x i n g  b e h a v i o r .  

I f  t he  cha in  l e ng t h  is chosen  a p p r o p r i a t e l y  (e.g. PS 1180), i t  is 

e v e n  pos s ib l e  to o b s e r v e  an  i n v e r s i o n  of  s h e a r  e f f e c t s  12 as  shown in" 

Fig. 4. In t h e  reg ion  of low ? v a l u e s  t h e  demixtng  t e m p e r a t u r e  of  a 

g i v e n  so lu t i on  r ema i ns  p r a c t i c a l l y  u n c h a n g e d .  As 7 is r a i s ed ,  s h e a r  

d i s s o l u t i o n  s e t s  in, r e a c h e s  a maximum e x t e n t  and  d e c r e a s e s  aga in .  E v e n -  

t u a l l y  the  e f f e c t  c hanges  s ign a t  a c h a r a c t e r i s t i c  s h e a r  r a t e  a b o v e  

which  s h e a r - d e m i x i n g  is obse rved .  

~, /s  -I 

30  100 3 0 0  1 0 0 0  
~: 0 ,5  ' ' ' " ' " 

~.~ T D / P S  1180 

6,0 wt.-% 
-o,5 

2 3 

Iog lo  ( ~ ' / s  -1) 

Fig. 4: P l o t  o f  dTvlsc = T~ visc - To B vers .  log  ? (el. Fig. 8) 
l 'or t h r e e  s o l u t i o n s  o f  p o l y s t T r e n e  (Mw = 1180  k g / m o l )  
o f  t h e  i n d l c a t e d  c o n c e n t r a t i o n s  in  t r a n s - d e c a l i n  ~2. 

P o l y m e r - 1 / p o l y m e r - 2 / s o l v e n t  s y s t e m s  In o rder  to keep  two i n c o m p a t i -  

b le  po lymers  in so lu t ion ,  l a rge  a m o u n t s  of  s o l v e n t  a re  r equ i r ed  and  one 

ends  up wi th  s y s t e m s  which di f fer ,  r o u g h l y  speak ing ,  f rom t h o s e  s t u d i e d  

in t he  l a s t  s e c t i o n  on ly  by  the  a l t e r e d  chemica l  n a t u r e  of  p a r t  of  t he  

h igh  mo lecu l a r  we igh t  m a t e r i a l .  Indeed ,  a l l  p h e n o m e n a  desc r ibed  for  t he  

b i n a r y  s y s t e m s  can  a lso  be found  wi th  t h e  p r e s e n t  t e r n a r y  ones;  t he  

e f f ec t s ,  however ,  a r e  no rma l ly  l a r g e r  by  a lmos t  one o rder  of  m a g n i t u d e .  

Tu rb id fme t r i c  r e s u l t s  17 for  the  s y s t e m  TD/PIB 80/PS 150 (PIB: p o l y i s o -  

b u t e n e )  g i v e n  in Fig. 5 i l l u s t r a t e  s h e a r - d i s s o l u t i o n .  The  v i s c o m e t r i c  

r e s u l t s  17 for  t he  s y s t e m  D/PIB 80/PS 2000 (D: equ i l ib r ium m i x t u r e  of  
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the  cis  and t rans  isomers of decalin) shown in Fig. 6 document the  

invers ion of shear  effects .  

-2 0 

I .  

-4 

-6  

TD/PIB 80/PS 150 

0,90 %/2,44 % o\/ 
o 

- %  . . . . . . . . .  ', . . . . . . . . .  . . . . . . . . .  i . . . . . . . .  

FiE. 5: Plo t  o f  /]Tturb .-~ 
T ~  t u r b  - T e  B v e r s .  

log ~ fo r  one compos i t ion  
o f  the  t e r n a r y  s y s t e m  
t r a n s - d e c a l i n / p o l y i s o b u t e -  
n e / p o l y s t y r e n e l r ;  t he  
molar masses (kE/mol) and 
polymer concen ira tions 
(wt96) are indicated. 

lg ( 7 / s  -1  ) 

o 2" 

o 

0 

D/PIBSO/PS 2000 d 
WpIB =0'0011 / 
Wps =0.0296 

~ • . . ]  
I ! i 

1 2 3 
ig (91s -I ) 

Fig. 6: P lo t  o f  
ATvisc = T~ vlsc - To B 
vers. log  ~ f o r  one 
compos i t ion  o f  the 
t e r n a r y  sys tem d e c a -  
l i n / p o l y i s o - b u -  
t e n e / p o l y s t y r e n e  uT ; 
t he  molar  m a s s e s  
(kg /mol )  and p o l y m e r  
c o n c e n t r a t i o n s  ( w t -  
f r a c t i o n s )  are  i n -  
dica ted. 

Polymer-I/polymer-2 systems The s tudy of the phase separat ion of 

flowlng liquids is na tu ra l ly  res t r ic ted  to par t ia l ly  compatible pairs of 
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macromolecules  in the i r  mol ten s t a t e .  The p r e sen t  mix tures  d i f fer  from 

the  above  cases  by the  f ac t  t h a t  not  on ly  the  so lu te  bu t  also the  

s o l v e n t  is high molecular  in i ts  na tu re .  The sys tem PS/PVME (PVME: 

po ly (v iny l  me thy l  e ther ) )  exh ib i t ing  lower c r i t i ca l  so lu t ions  t e m p e r a t u -  

res  (LCSTs) is p robab ly  bes t  s tudied.  How the  e n t r a n c e  in to  the  t w o - p h a s e  

region upon hea t i ng  is moni tored  by the  v i s c o s i t y  of the  sys tem in th is  

case  z4 can be seen from Fig. 7. 

1.0E+051 
30 Pa 

c. 

Ct~ 
0 

° °  

0 
0 

I.OE+02 
i o o  13o 

TEL~PERATURE ('C) 

Flg. 7: T e m p e r a t u r e  dependence  o f  the  v i s c o s i t y  o f  a m i x t u r e  
o f  p o l y s t y r e n e  (IS, 44 w t ~ ) )  and p o l y ( v i n y l  m e t h y l  e t h e r )  
(PVME) a t  t he  i n d i c a t e d  s h e a r  s tresses14;  PS: Mw = 348 
kg /mo l  and U = (Mw/M,)-I  = 0.9; PVME: Mw = 48 kg /moi  
and U = 0.9. 

Al though  the  d i scon t inu i t i e s  are  no t  as sha rp  as wi th  the  so lu t ions  

of  polymers  in low molecular  weight  l iquids,  the  minima in ~(T) 

ind ica t e  phase  s e p a r a t i o n  beyond  doubt  14. The above  diagram c o r r e -  

sponds  to an ex tens ion  of the  homogeneous  region by the  app l i ca t ion  of 

shear .  Examples have ,  however ,  also been found for the  oppos i te  e f -  

f ec t  15. So fa r  no inve r s ion  of e f fec t s  has  been repor ted  to the  

knowledge of  the  au thor .  From the  ma te r i a l  pub l i shed  so fa r  one can 

conclude  t h a t  the  magni tude  of shea r  e f fec t s  is comparable  to t h a t  

obse rved  with the  so lu t ions  of incompat ib le  polymers  in a common 

so lven t .  



202 

CALCULATION OF PHASE DIAGRAMS 

Different theoretical approaches have been taken to explain the 

influences of shear on demixing. In the thermodynamic treatment, the 

frictional forces can be considered in at least two ways: Either in 

terms of the stored energy which is added to the Gibbs energy of 

mixing 2o,21, or in terms of chain stretching which makes a flexible 

polymer "semi"-flexible 21. 

The conditions for the transition between the phase separated and the 

homogeneous state of flowing polymer/solvent mixtures can also be calcu- 

lated on the basis of the stationary size of the droplets of the 

suspended coexisting phase s2, As soon as these droplets are broken 

down to the dimensions of the individual polymer molecules, the system 

is homogeneous. Some studies, although not ending up with phase dia- 

grams, are closely related to the present topic, particularly those 

dealing with scattering functions and the dynamics of phase separation 

under flow s3,24. 

In this work, the demixing conditions for sheared polymer solutions 

are exclusively calculated in terms of the energy stored during 

stationary flow. The fact that this recoverable shear normally consti- 

tutes only a minute fraction (typically (( I0 -s) of the Gibbs energy 

of mixing 2° justifies the application of equations which are strictly 

speaking only valid for equilibrium conditions. 

Generalized Gibbs energy of mixing ACr~ 

• # 

The starting point of the present calculatlons is Eq. (1) so 

(1) AG~ = AGz +Es 

in which AGz is the molar Gibbs energy of mixing (zero shear, equi- 

librium conditions) and Es the energy the solution can store per tool 

in the stationary state while it flows. In the two subsequent sections 

it is shown how the two terms of the sum of Eq. (1) are accessible. 

Expressions for AGz The thermodynamic properties of stagnant poly- 

mer solutions are normally described by 
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(2) AGz/(RT) = xtln~o,+ x21n~o2 + gxt~o2 

where xl and ~oi are the mol fraction and the volume fraction of the 

components (index 1 standing for the solvent and 2 for the polymer). 

Using this relation, all characteristics of an actual system are in- 

corporated into the (concentration and temperature dependent) interac- 

tion parameter g. 

The measured thermodynamic mixing behavior is normally expressed in 

terms of either Eq. (3) or (4). The former relation 25 is theoretically 

justified and reads 

(3) g = c~ + ~/(l-v~). 

and T are constants for a given system and ~o varies in a charac- 

teristic manner with temperature; for UCSTs it is normally a linear 

function of T -t. 

Eq. (4) constitutes an empirical series expansion 

(4) g = goo/T + golT +(g,o/T + gttT)cp'z +(g2o/T)cps 2 

for which the individual coefficients gtj are again accessible from 

measurements of the chemical potential of the solvent as a function of 

composition and temperature. Depending on the precision wanted, four and 

more parameters are required for the description of g(~o2,T). 

Expressions for E, The stored energy is accessible from the solu- 

tion elasticity by means of a theoretical relationship =s which, how- 

ever, becomes invalid for too pronounced non-linear viscoelastic behavi- 

or. According to experimental experience av Es can be more convenient- 

ly also obtained from flow curves according to *= 

(5) E, = (xtV, +xzV2) nvo$ 2 (n/no) I nY r "2d'. 

no is the zero shear viscosity and vo the characteristic viscometric 

relaxation time, introduced by Graessley 28 for the description of flow 

curves by means of the following equations: 

(6) n/no = gZ.~(8 ) h(E~ ) 
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(8)  

(9) 

g ( e  ) = 2 /~  [ a rcco t  e + O / ( 1 + 8  2)] 

h ( O )  = 2/~ [ a rcco t  O + O ( 1 - O  2 ) / ( 1 + 8  2)21. 

From e x p e r i e n c e  one knows z9 t h a t  To is n o r m a l l y  on t h e  o rde r  of 

t h e  t h e o r e t i c a l l y  c a l c u l a t e d  Rouse r e l a x a t i o n  t ime ao TR 

( I0 )  T~ = 6/7r 2 [(no-ns)Ml(c2RT)]; 

Ks is  t h e  v i s c o s i t y  of t h e  pu re  s o l v e n t  and  c2 t h e  c o n c e n t r a t i o n  

(mass  pe r  vo lume)  of t h e  po lymer  wi th  t he  mola r  mass  M. 

The p a r a m e t e r  d*, a p p e a r i n g  in  Eq. (5), c o n s t i t u t e s  a g e n e r a l i z e d  

p o w e r - l a w  e x p o n e n t  d e f i n e d  as  

(11) d* = - (8 In I])/(8 In ~,) 

and  a c c o u n t s  for  t he  f a c t  t h a t  t h e  a b i l i t y  of a s o l u t i o n  to  s t o r e  e n e r g y  

becomes  l e s s  as  t h e  d i s e n t a n g l e m e n t  p r o c e s s e s  p roceed .  For  known v a l u e s  

of  ~o a n d T o  i t  can  be c a l c u l a t e d  by  means  of t h e  Eqs. 6 - 1 0 .  

The t e m p e r a t u r e  and  c o n c e n t r a t i o n  d e p e n d e n c e  of  ~o can  f r e q u e n t l y  

be d e s c r i b e d  29 by  t h e  A r r h e n i u s  Eq. (12), in which  the  p a r a m e t e r s  v a r y  

wi th  ~o2 as  f o r m u l a t e d  in  Eqs. (13) and  (14): 

(12) 

(13) 

(14) 

in  (rlo/Pas) = A + E~/RT 

A --- Ao + A1 q:~ 

E÷ = E#o + lg~l '4~ 

For  t h e  m a t h e m a t i c a l  d e s c r i p t i o n  of  E. ( a t  g i v e n  M and s e t t i n g  

To=TR) as  a f u n c t i o n  of compos i t ion ,  t e m p e r a t u r e  and  s h e a r  r a t e ,  

fou r  p a r a m e t e r s  (Ao, A,, E% and  P.'~D a r e  r e q u i r e d ,  as  long as  

ns can  be n e g l e c t e d  wi th  r e s p e c t  to  ~o in  Eq. (10). 

S h e a r - d i s s o l u t i o n  a n d  s h e a r - d e m i x i n g  

On t h e  b a s i s  of  t h e  g e n e r a l i z e d  Gibbs e n e r g y  of mixing  (Eq. (1)) t h e  

o c c u r r e n c e  of o p p o s i t e  s h e a r  e f f e c t s ,  d e p e n d i n g  on the  p a r t i c u l a r  s y s t e m  

and  t h e  c o n d i t i o n s  chosen ,  can  be i m m e d i a t e l y  r a t i o n a l i z e d .  In p l o t s  "of 

AGz or  AG? as  a f u n c t i o n  of t he  tool f r a c t i o n  of po lymer ,  demix ing  is  
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ind ica ted  by the  poss ib i l i ty  to c o n s t r u c t  double  t a n g e n t s .  From the  

diagrams of  Fig. 8 (not  drawn to scale)  i t  can  be seen how AG~(x2) 

d i f fers  from AGz(xs) as a r e su l t  of  the  add i t ion  of the  s to red  

ene rgy  Es. 

Sheor-dissol ution Sheor-demixing 

0 

Es/ 

0 X2 

AGz 

Fig. 8: Scheme u~ of the sltuations leading to shear- 
dissolution or to shear-demixing in terms of the generalized 
Gibbs energy of mixing, as deflned in Eq. (1). 

In the  case  of l inear  v i s coe l a s t i c  b e h a v i o r  (d" = 0; 1.h.s. of Fig. 

8), E8 inc reases  so d r a s t i c a l l y  with r i s ing polymer  c o n c e n t r a t i o n  t h a t  

th i s  con t r i bu t i on  can undo the  "hump" in AGz(x2) caus ing  the  demi -  

xing of  the  s t a g n a n t  system.  This means t h a t  s h e a r - d i s s o l u t i o n  is 

t yp i ca l  for l inear  v i s coe l a s t i c  c i r cums tances .  Shea r -demix ing ,  on the  

o the r  hand,  is bound to n o n - l i n e a r  v i s c o e l a s t i c i t y  (d* > 0; r .h.s,  of 

Fig. 8). In t h a t  case Es(x2) exh ib i t s  a maximum and can c o n s e q u e n t l y  

cause  a "hump" in AG~(x2): The flowing so lu t ion  phase  s e p a r a t e s  in 

c o n t r a s t  to the  qu ie scen t  one. 

Quantitative determinations of the composition of the phases which 

coexist at different shear rates were performed along the above lines 

either graphically 2o (using an appropriate auxiliary function) or on a 

computer ~*. The next two paragraphs deal with special phenomena obser- 

ved in this context. 
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Eulytlc points 

One p a r t i c u l a r i t y  r e su l t i ng  with app rop r i a t e  sys t ems  (for l inear  

v i s coe l a s t i c  behav io r  as well as for n o n - l i n e a r )  is the  coex i s t ence  of  

t h r ee  l iquid phases  in the  shea red  s t a t e  under  spec ia l  condi t ions .  This 

s i t ua t ion ,  which can be de t ec t ed  from the  occur rence  of t r ip le  t a n g e n t s  

to aG?(x=), i nd ica te s  the  g r e a t e s t  poss ib le  ex t ens ion  of the  h o m o g e n e -  

ous region (i.e. the  maximum e x t e n t  of s h e a r - d i s s o l u t i o n  t h a t  can be 

r eached  for a g iven  s h e a r  ra te) .  The va lue s  of  T and x= a t  which th is  

happens  for c o n s t a n t  7, or t h a t  of T and 7 for c o n s t a n t  x=, c o n s t i t u t e  

c h a r a c t e r i s t i c  points .  They  h a v e  been termed e u l y t i c  points  2o, by 

ana logy  with the  e u t e c t i c  points ,  which give the  maximum ex tens ion  of 

the  l iquid s t a t e  with r e spec t  to the  solid. 

For l inea r  v i s coe l a s t i c  condi t ions  the  demixing of the  shea red  sys tem 

TD/PS (5000 segments)  was ca l cu l a t ed  ~o up to 10 000 s -1. Fig. 9 

shows sec t ions  t h rough  the  ob ta ined  t h r e e - d i m e n s i o n a l  phase  diagram 

T?(x=,~,) a t  va r ious  c o n s t a n t  composi t ions  and Fig. 10 at  d i f fe ren t  

shea r  ra tes .  The eu ly t i c  poin ts  are in both  cases  ind ica ted  by full  

circles.  
{og (i//s-l) 

(o 0 0 
\ 

~.o 
I 

I...L>.- 
• . . .  - 2 -  

2 
I 

x 2.10 5 : 2.5 2.0 1.5. 1.0 

3 

Pig. 9: D i f f e rence  b e t w e e n  Tf, the  demix ing  t empera tu re  o f  a 
g i v e n  so lu t ion  a t  the  s h e a r  ra t e  ?, and To, t h a t  o f  the  
so lu t ion  a t  r e s t ,  as  a f u n c t i o n  o f  log i', ca l cu la t ed  for  the  
s y s t e m  t r a n s - d e c a l i n / p o l y s t y r e n e  (5000 s e g m e n t s )  and the  
i n d i c a t e d  tool f r a c t i o n s  o f  the  polymerZ°; the  f i l l ed  c i rc les  
r e p r e s e n t  the  e u l y t i c  po in t s .  
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Fig. I0: Phase diagram of 
the system trans-deca- 
lin/polystyrene (5000 seg- 
ments) calculated 2° for 
the indicated constant 
shear rates ~.; the solid 
c irc les  g i v e  the  e u l y t i c  
po in t s ,  the  d a s h e d  l ine  
shows ,  as  an example ,  the  
c o e x i s t e n c e  o f  t h ree  p h a -  
s e s  a t  ~7 = 5 0 0 0  s - ' .  

The n o n - l i n e a r  case  was s t u d i e d  12 wi th  a n o t h e r  r e p r e s e n t a t i v e  of 

t he  a b o v e  sy s t em,  where  t h e  number  of s e g m e n t s  of t h e  po lymer  is  

a p p r o x i m a t e l y  t h r e e  t imes  l a rge r .  The r e s u l t s  of t h e s e  c a l c u l a t i o n s  a re  

shown in Fig.  11. 
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Fig. ii: Phase diagram of 
the system trans-deca- 
lin/polystyrene (Mw = 
1770 kg/mo]) calcula- 
ted 'z for different 
shear rates ~.. 
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F l o w - i n d u c e d  c losed misc ib i l i ty  gaps  

So far,  all  cons ide ra t i ons  concerned  UCSTs; except  for one impor tan t  

i tem the  s i t u a t i o n  should  be comple te ly  ana logous  with LCSTs. This 

e s sen t i a l  d i f fe rence  lies in the  f ac t  t h a t  the  inc rease  in Es a s s o c i a -  

t ed  with the  r educ t ion  of T a t  c o n s t a n t  7 br ings  the  sys t em closer  to 

i t s  equi l ibr ium misc ib i l i ty  gap in the  ease of  low t e m p e r a t u r e  demixing, 

whereas  the  d i s t ance  becomes la rger  in the  case  of high t empe ra tu r e  

demixing. As a consequence  of th i s  p a r t i c u l a r  s i t ua t i on  a t o t a l l y  new 

phenomenon  t u r n s  up if  the  condi t ions  are  favorab le ,  namely  the  c rea t ion  

of a closed so lub i l i ty  gap by modera te  shea r ing  wi th in  a t e m p e r a t u r e -  

composi t ion range  where the  sys tem at  r e s t  is homogeneous.  Fig. 12 gives  

an example 3. for the  r e su l t s  ob ta ined  from model ca l cu l a t i ons  with a 

polymer  cons i s t ing  of 5000 segments  and an exo thermal  t h e t a  t empe ra tu r e  

of 333.3 K. 

350 

330 

31C 

_ _  ,° • 

I 

# 

' N=5000 
I ; 7 =2500s-1 

- , ,_:2' ' 
_ , ,  _. . "  

/ . . '  

/ . . , : ' "  

/ /  

7=5000s4 

o o12 o o12 o.4 

2 

FiE. 12: Phase diagram calculated for a model system exhibi- 
ting a lower critical solution temperature (exothermal the- 
ta temperature at 888.8 K) for 2500 s -I (part a) and 5000 
S -1 (part  b) r e spec t i v e l y .  The equi l ibr ium so lub i l i t y  gap 
is  i nd i ca t ed  by  the  do t t ed  curves .  The broken l ine  g i v e s  the 
t empera ture  dependence  o f  the  composit ion a t  which the  s t o r -  
ed energy  becomes maximum for  the  par t i cu lar  s h e a r  rate.  The 
sol id circle o f  p a r t  b r e p r e s e n t s  an eu l y t i c  point .  
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For the  occur rence  of shea r  induced closed so lub i l i ty  gaps  of the  

above  type  it  is e s sen t i a l  t h a t  the  curve  descr ib ing  the  t e m p e r a t u r e  

dependence  of  the  composi t ion a t  which the  maximum amount  of  ene rgy  can 

be s to red  for a g iven  shea r  r a te  does no t  i n t e r s e c t  the  e q u i l i b r i -  

um misc ib i l i ty  gap like shown in pa r t  a of Fig. 12. As with upper  

c r i t i ca l  so lu t ion  t empera tu re s ,  s h e a r - d i s s o l u t i o n  and eu ly t i c  

poin ts ,  as well as s h e a r - d e m i x i n g ,  can also be obse rved  with 

LCSTs as demons t r a t ed  in pa r t  b of Fig. 12. 

DISCUSSION 

Detai led t h e o r e t i c a l  ca l cu l a t i ons  and s y s t e m a t i c  exper iments  h a v e  so 

f a r  on ly  been performed for p o l y m e r / s o l v e n t  sys tems.  For th i s  r ea son  the  

compar ison  of  p red ic ted  and ac tua l  b e h a v i o r  must  in the  main be conf ined  

to th i s  case,  for  which all r equ i red  da t a  are  ava i lab le .  Only some 

q u a l i t a t i v e  a rgument s  can be g iven  for the  o the r  sys tems.  

With polymer  mix tures  (in the  absence  and in the  p resence  of a low 

molecular  weight  l iquid) one problem for  the  app l i ca t ion  of the  p r e s e n t  

t h e o r e t i c a l  app roach  cons i s t s  in the  lack of exper imen ta l  or t h e o r e t i c a l  

i n fo rmat ion  on the  s tored  ene rgy  as a f u n c t i o n  of  t empera tu re ,  compos i -  

t ion  and shea r  ra te .  With s o l v e n t / p o l y m e r - I / p o l y m e r - 2  sys t ems  an a d d i t i o -  

na l  compl ica t ion  is encoun te red :  Not even  the  equi l ibr ium phase  b e h a v i o r  

can  a t  p r e s e n t  be descr ibed  t h e o r e t i c a l l y  by means  of p h y s i c a l l y  s i g n i f i -  

c a n t  i n t e r a c t i o n  paramete rs .  

In those  cases ,  however ,  in which all  r equ i red  in fo rmat ion  concern ing  

AGz(xi,T) and Es(xl,T,7) is ava i l ab l e  with su f f i c i en t  accu racy ,  

s h e a r  in f luences  on phase  s e p a r a t i o n  can be p red ic ted  v e r y  accu ra t e ly ,  

as  will be documented  in the  fol lowing sec t ions  for the  most  i n t e r e s t i n g  

r e p r e s e n t a t i v e  of the  sys t em trans-decal in/polystyrene (M = 1180 

kg/mol),  for which the  e f fec t s  of shea r  change  sign upon the  v a r i a t i o n  

of  7. Fig. 13 shows the  exper imenta l  r e su l t s  12 in terms of  the  phase  

d iagram at  d i f f e r en t  shea r  r a t e s  and Fig. 14 the  co r respond ing  p r e d i c -  

t i ons  12. 
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FiE. 18: Phase  diagram o f  the  s y s t e m  t r a n s - d e c a l i n / p o l y -  
s t y r e n e  (My = 1180 kg /mol )  d e t e r m i n e d  v i s c o m e t r i c a l l y  I~ 
a t  the  i n d i c a t e d  s h e a r  r a t e s  (dashed  l i nes )  and  equi l ibr ium 
s o l u b i l i t y  gap (sol id  l ine) .  
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f o r  the  i n d i c a t e d  s h e a r  r a t e s  (dashed  l i ne s )  and  equ i l ibr ium 
s o l u b i l i t y  gap (sol id  l ine) .  
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For t e chn i ca l  reasons ,  no measuremen t s  can be made a t  v e r y  small and 

v e r y  large 7 va lues ,  bu t  where the  exper imenta l  in format ion  is a c c e s s i -  

ble, i t  agrees  a lmost  q u a n t i t a t i v e l y  with predic t ion .  In p a r t i c u l a r  i t  

can  be seen from the  two diagrams t h a t  the  eu ly t i c  poin t  v a n i s h e s  a t  

s h e a r  r a t e s  be tween  346 and 979 s -~ and t h a t  s h e a r - d e m i x i n g  is o b s e r -  

ved  exc lus ive ly  above  700 s-~. Exper iment  and t h e o r y  can be more 

d i r e c t l y  compared by means of Fig. 15. 

y 1.0 

I 
e ~  

P-~" 0,5 - 

0 

-0,5 

TD/PS 1180 

o 

I I 

2 3 
lOglo (~'/s -1) 

Fig. 15: Comparison 12 b e t w e e n  the  e x p e r i m e n t a l l y  d e t e r m i n -  
ed ( symbols )  and the  c a l c u l a t e d  (sol ld l i ne )  e f f e c t s  o f  
s h e a r  on the  demix ing  t e m p e r a t u r e  o f  a 6 wt.% s o l u t i o n  o f  
p o l y s t y r e n e  (Mw = 1180 kg /mo l )  in t r a n s - d e c a l i n  in t e rms  
o f  zlT2 as  a f u n c t i o n  o f  log 9. 

In th i s  g raph  12 the  e f fec t s  are  depic ted  in terms o f  the  d i s p l a c e -  

ments  of the  demixing t e m p e r a t u r e s  of the  f lowing so lu t ion  with r e spec t  

to the  s t a g n a n t  one as a func t ion  of shea r  ra te .  Fig. 15 d e m o n s t r a t e s  

for  one p a r t i c u l a r  so lu t ion  (6 wt.%) how s h e a r - d i s s o l u t i o n  changes  to 

s h e a r  demixing; for the  p r e s e n t  polymer  c o n c e n t r a t i o n ,  t he  eu ly t i c  po in t  

is s i t u a t e d  a t  approx.  100 s-1. The measur ing  da t a  agree  well with the  

c a l c u l a t e d  curve ,  excep t  for the  h ighes t  shea r  ra te ,  a t  which the  t h e o -  
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r e t i ca l  e q u a t i o n  used for  the  ca l cu l a t i on  of Es has  a l r e ady  become 

inval id .  

The a lmost  q u a n t i t a t i v e  ag reement  be tween  exper iment  and t h e o r e t i c a l  

p red ic t ion  is no t  su rp r i s ing  in view of  the  fac t  t h a t  phase  s epa ra t i on  

unde r  shea r  can be t r e a t e d  as a nea r  equi l ibr ium phenomenon.  Despite the  

s impl ic i ty  of the  approach,  however ,  add i t iona l  in s igh t  can be gained.  

So fa r  i t  pr imar i ly  concerns  the  coex i s t ence  of  th ree  l iquid phases  at  

the  eu ly t i c  poin ts  and the  occur rence  of s h e a r  induced closed misc ib i l i -  

t y  gaps in the  case  of  high t e m p e r a t u r e  demixing. 

All e f fec t s  p red ic ted  or obse rved  for polymer  so lu t ions  under  shea r  

should  also occur  in e longa t iona l  flow and with polymer  mixtures ,  as 

i nd ica t ed  by publ i shed  exper imenta l  r esu l t s .  I t  is, for example,  eas i ly  

poss ib le  to connec t  the  phase  s e p a r a t i o n  t e m p e r a t u r e s  of polymer  m i x t u -  

res  dur ing e longa t iona l  flow as a func t ion  of  composi t ions  in a p u b l i s h -  

ed diagram 1~ such  t h a t  eu ly t ic  po in t s  ( i n t e r sec t ion  of two b ranches  of 

the  demixing curves )  are  ob ta ined  1". Fur thermore ,  the  o b s e r v a t i o n  ~" 

of a flow induced misc ib i l i ty  gap below the  LCST of a polymer  mixture ,  

which is s e p a r a t e d  from the  equi l ibr ium gap by a region of homogenei ty ,  

can be i n t e r p r e t e d  along the  same l ines  as the  occur rence  of a closed 

misc ib i l i ty  gap with shea red  polymer  so lu t ions  nea r  the i r  high t e m p e r a -  

t u re  demixing. 

In order  to check whe the r  the  above  con jec tu res  are a c t u a l l y  correct ,  

add i t iona l  exper iments  ta i lo red  to v e r i f y  or d i sprove  them are n e c e s -  

sa ry .  Ano the r  i n t e r e s t i n g  item c o n c e ~ s  the  ac tua l  o b s e r v a t i o n  of the 

t h r ee  phases  which should  coexis t  accord ing  to t h e o r y  a t  the  eu ly t ic  

points .  

Some gene ra l l y  va l id  s t a t e m e n t  can, however ,  a l r eady  be made now, 

s ince  t h e y  are only  based  on phenomenologica l  the rmodynamics :  The o c c u r -  

rence  of s h e a r - d i s s o l u t i o n  or s h e a r - d e m i x i n g  is for any  sys tem bound to 

the  s i t u a t i o n s  ou t l ined  in Fig. 8. I f  t he  flow condi t ions  are such t h a t  

the  l iquids behave  l inea r ly  v i s coe l a s t i c  a t  all composi t ions ,  no m e a s u r -  

able e f fec t  or an en la rgement  of the  homogeneous  region will be o b s e r -  

ved.  If, on the  o the r  hand,  n o n - l i n e a r  v i s c o e l a s t i c i t y  is invo lved ,  the 

region of homogene i ty  may e i the r  s t i l l  be inc reased  or diminished,  

depending  on the  r e l a t i v e  pos i t ion  of  the  c r i t i ca l  point  and the  
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compos i t ion  a t  which the  maximum e n e r g y  is s t o r ed  for  a g i v e n  s h e a r  r a t e  

or r a t e  of  e longa t ion .  The  occu r r ence  of s h e a r - d e m i x i n g ,  howeve r ,  is in 

a n y  case  an  u n e q u i v o c a l  i n d i c a t i o n  of n o n - l i n e a r  v i s c o e l a s t i c  b e h a v i o r .  
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1. I n t r o d u c t i o n  

In the theories about the rheoloElcal behaviour of materials their actual state is to 

represented by a model. Such a model may be considered an image of the system, sim- 

plified in such a way that it is tractable for mathematical analysis and still re- 

presentlnE the features of the system that are expected to be important for its rheo- 

logical behaviour. The development of models may be viewed as a process in which some 

kind of balance between physical reality, mathematical simplicity and usefulness is 

optimized. 

In the present paper a thermodynamic approach is given which may be applied to many 

type of models in a unified and systematic way. Our results are similar to the ones 

obtained earlier by Lhuillier [I] and Maugin and Drout [2], but derived in a slightly 

different manner and generalized to a broader class of systems. There is also a close 

connection with the more general abstract formulation of Grmela [3] based upon a bra- 

cket formulation of diffusion and convection equations. In the work of Grmela however 

the general matrix representation (see eq. (2.7) below) which plays a central role in 

our formulation was not obtained. An important notion in our approach is the explicit 

distlnEuishment of different levels of description. This means that the representa- 

tion of system by a model may be a more or less detailed description of the real 

mlcrostructure. The following levels of description may be considered: 

l e v e l  1: molecular" dynamics 

A molecular model representation very similar to the real mlcrostucture and 

governed by classical mechanics. This level is used in computer simulations. 
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level 2: 

l e v e l  3: 

l e v e l  4: 

level 5: 

phase  space  

Representation of the structure llke level I, but specification of the 

state by a distribution function in phase space. 

configuration space 

Representation of the structure like level 2 but preaveraged with respect 

to velocities. The state is specified by a configurational distribution 

function. 

structural variables 

The structure is represented by a (set of) scalar and/or tensorial varia- 

bles. 

continuum 

The system is represented by a continuum, specified by {a) constitutive 

equation(s). 

In the present paper we wlll consider only the levels 3, 4 and 5. Nevertheless there 

will be still many possible descriptions for each system. The reason for this is 

that, as we shall see in the next section, the model is based upon a division of the 

system in a subsystem and its environment, both of which may be described at diffe- 

rent levels of description. 

In section 2 the general theory -which, for reasons to be given in section 3.1, will 

be called "the triangle model" -will be presented and in section 3 the application to 

a number of rheological models will be discussed. These applications are merely to 

illustrate the method. No attempt has been made to be complete in some sense or to 

obtain new results. In section 4 we discuss some features of the present approach and 

some prospects for future investigations. 

2 .  Theory 

In any microrheological model it is possible to define a subsystem and a set of ex- 

ternal stresses and forces are acting on it. This set will be denoted here by ~, and 

the associated set of external flows and velocities by F. The power supply to the sub- 

system then becomes 

W = Z • F (Z.1) 

Here, the dot denotes an inner product in the linear space to which E and F belong. 

If E and F are vectors or tensors the product will be a single or multiple contrac- 
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tion. Z and F may however also denote spatial fields or other functions, in that case 

the inner product in (i) may contain an integration with respect to the space coordi- 

nates or other variables. 

Besides the external variables Z and F we introduce a set of state variables ~, such 

that, at constant temperature, the free energy A of the system may be expressed as a 

function, or a functional of #: 

A = A (~) (2.2) 

The derivative of A with respect to ~ has the significance of a (set of) thermo- 

dynamic force(s): 

~A 
= -- = ~ (#) (2.3) 

Here, and elsewhere in this paper, the kind of derivative is not explicitly speci- 

fied, it depends upon the nature of the quantity #: if ~ is a set of scalar or ten- 

sorial variables (3) consists of a set of partial derivatives and in the case that 

is a function, an apropriate functional derivative. The latter situation occurs, for 

instance in configurational-space molecular models, if the distribution function @ is 

used as the state variable ~. 

We now consider the rate of dissipation A. Bij definition, this is the power supply 

(I) minus the rate of reversible storage of energy. In the isothermal case, the latter 

part equals the rate of change of the free energy A = ~ m ~ (the ~ denotes an inner 

product in the space to which , and # belong) so we have 

= z • #- n "  ~ (2.4) 

We assume that the set of variables, introduced so far, is complete in the sense that 

all quantities in (4) may be considered as functions (or functionals) of F and N: 

z = z (b,n) , ~ = % (b, n) (2.5) 

If from the three equations (4) and (5) the internal variables ~ and ~ (including ¢) 

are eliminated a relation between Z and F results. This is the microscopic consti- 

tutive equation of the model. 

We will now impose some general restrictions upon the functionals (5). To that end we 

introduce the concept of a "macroscopic time reversal". With this we mean a reversal 

of the external flows and velocities. The term "macroscopic" is used, in order to 

distinguish this kind of time reversal from a real time reversal in which also on a 
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microscopic scale all velocities and rates of change of state variables are reversed 

A microscopic time reversal implies a macroscopic one but the opposite statement is 

not necessarily true. In the present formalism a macroscopic time reversal is a 

change of sign of the variable F. Under such a transformation the variables h, Z, 

and % will also change but some restrictions upon these changes are imposed by the 

laws of thermodynamics. In order to analyse this, we define for any functional 

f (F) an even and an odd part with respect to macroscopic time reversal as 

1 - 1 
f+ (F) + ~ ( f  (F) + f C-F)) and f (F) = ~ ( f  (F) - f ( - F ) )  

For the variables in (4) we then have: A = A +, since the dissipation A has to be 

positive, by the second law of thermodynamics; F = F-, by definition; and U = ~+, 

since according to (3) ~ is a variable of state and not directly dependent upon F. 

The quantities Z and % have no definite parity, so, in general: Z = Z + + Z- and % = 

$-+$" 

We now consider the even part of (4): 

~ = Z - .  r - . *  %+ 

and the odd part: 

o =Z + . ~_ ~. %- 

(2.6) 

(2.7) 

From (6) we see  t h a t  o n l y  the  odd p a r t  o f  Z and t h e  even  p a r t  o f  ¢ c o n t r i b u t e  to  t h e  

d i s s i p a t i o n  4. T h e r e f o r e  we d e f i n e  the  d i s s i p a t i v e  s t r e s s  Z D as  

Z D : Z- (2.8) 

The even part of Z will considered as a reversible stress: 

Z R = Z + (2.9) 

Similarly we define ~ = %D + 

with 
$D = $÷ 

and 

$" = $- 

%" 

(2.10) 

(2.11) 

We now will derive some more explicit results about the dependence of Z and % on 

and H. From the parity of F, N, Z D and %D, as defined in (8) - (ii) it can be seen 

that we may write: 

and 

Z D = ~ (F,  N) • F ( 2 . 1 2 )  

%D = _# (~,  n) • ~ ( 2 . 1 3 )  



219 

in which the quantities B and ~ are even with respect to F. The minus sign in (13) 

will be explained after eq. (17), below. For the reversible part of ~ we may write 

~R = A (F, n) • F (2.14) 

in which A is even with respect to F and N. If (14) is substituted in (7), on using 

(9) and (11) we see that 

so 

z R • # =n.A (#, n) • # 

E R = A T (#, ~) " n 

(2.15) 

(2.16) 

The quantity A T in this expression is the adJoint of the operator A, in the sense 

that U • A • F = F • A T • ~ for arbirary U and F. (In the case that A is a tensor, A T 

denotes the transposed of A). The transposed of higher order tensors, defined in 

this way depends upon the number of contractions corresponding to the products "i" 

and "." If, for instance A is a third order tensor a • k : B = B : A T • a implies 

that klj k ATjkl whereas A : A • b b A T = = • : A would imply klj k = ATklj. We will 

make no distinction in the notation of these type of transpositions since in our case 

their meaning can always be deduced easily from the expressions in which they are 

used. 

We see that, as a direct result of eq. (7), which was obtained by considering the 

parity of the quantities in (4) with respect to macroscopic time reversal, obtain a 

close relationship between the evalution equation (14) of ~R and the expression (16) 

of E ~. 

The results (12), (13), (14) and (16) may be collected in a matrix expression, simi- 

lar to the one obtained in classical treatment of non-equilibrium thermodynamics from 

the expression of the entropy production, (which, in the isothermal case considered 

here, is proportional to the dissipation (4)). 

This matrix expression becomes: 

AT.] 
(z.17} 

The skew-semmetry of the off diagonal elements is in accordance with the Onsager- 

Casimir reciprocal relations. The minus sign in (17) was introduced, in order to use 

the "forces" and "fluxes" of the expression of the dissipation (4), written as A E 

• ~+ C-n) .%. 
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A derivation of a set of rate equations similar to our derivation of (17) by taking 

into account the tlme-reversal properties of dissipative effects was first applied to 

rheological models by Lhuillier [i], (see also the review article by Maugin and Drout 

[2]). 

The main difference to the approach in these papers and the one presented here is 

that we do not consider the parity of variables with respect to ordinary time rever- 

sal but to what was called a macroscopic time reversal. This enabled us to split up 

the original expression (4) of the dissipation into the two parts (6) and (7). In 

this way the reversible and dissipative parts of the quantities ~ amd Z may be de- 

fined in an unambigious way. In the method based upon ordinary time reversal-symmetry 

a dissipation expression similar to (6) and an expression similar to 

(7) are introduced ad hoc. 

It is interesting to note that since A is independent of F, if follows from (17) 

A = 3 ~R / ~ # and so we obtain 

Z R = IT * -- (2.18) 

This result is in accordance with an expression first derived by Grmela [3] in a 

general theory based upon a bracket formulation of convection and diffusion equa- 

tions. In [3] and also in subsequent publications by Grmela et al. [4-6] it was shown 

that the expression (18) is consistent with the stress-tensor expressions in many 

theological models. 

In the application to specific theological models it is possible to make different 

choices for the variables Z, F, II and 4, depending upon the choice of the sub(system) 

and the level of description. A particular choice will be referred to as the " (•, F, 

/ IT, ~) - level of description" with the choosen variables substituted for Z, F, IT 

and # In section 3 we will discuss several rheological models at various levels of 

description. 

3. A p p l i c a t i o n s  

The theory, described in section 2 will now be applied to a number of special rheo- 

logical models. In section 3.1 we start with the treatment of spring dashpot models. 

This results in the construction of a special type of mechanical model, called "the 

triangle model" which represents the important features of the general theory in a 
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schematic way. In section 3.2 the elastic dumbbell will be discussed at several 

levels of description and in section 3.3. the rigid dumbbell model as an example of a 

model with a constraint. 

In section 3.4 it will be shown that it is also possible to describe reptation models 

in the present formalism and in section 3.5 we discuss the transient-network model as 

an example of a kinetic model. Finally in section 3.6 some examples of configura- 

tional tensor theories will be treated. 

3.1 M e c h a n i c a l  m o d e l s  

In the treatment of linear viscoelasticity one often makes use of spring-dashpot 

models, as a phenomenological, representation of material behaviour. Although the 

theory presented in section 2 is not restricted to linear viscoelastic behaviour it 

is still very instructive to apply it to this type of models. The reason for this is 

that some of the basic elements of the present model: reversible storage of energy, 

dissipation and conpllng of internal parts of the system to the environment are also 

the basic characteristics of spring-dashpot models. 

The external variables Z and r in (2.17) then become the external stress T and the 

external rate of extension ~, so we have: 

z=T , ~ =  ~ (3. i - i )  

The mechanical energy, stored in the springs of the model corresponds to the free 

energy A (~) defined in (2.2). We will consider here models with one spring, with 

spring force ~ and an extension e, so we have: 

= c , # = e (3.1-2) 

The dissipation expression (2.4) now becomes: 

~ = ~  - ~  (3.1-3) 

SO we, similar to (2.17), we have 

z • -A 

(3. i-4) 

In table I the constans W, ~ and A are given for a few well known mechanical models. 

We see that the structure of the matrix in (4) reflects the connection structure of 

the corresponding network: 
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Table I 

Eq. (3.1-4) applied to some mechanical models 

Model 

K 

K 

K 
A/Vv - 

P a r a m e t e r s  i n  ( 

o 

0 0 

o% 0 

0 1/n2 

oi 1/o2 

if the internal stress v is directly coupled to the external stress ~ (like in the 

Maxwell model) the parameter n vanishes. If on the other hand the rate of extension 

of the spring Z is directly coupled to the external rate of extension ~ (like in the 

Voigt-Kelvin model) the parameter ~ vanishes, the other two possibilities are combi- 

nations of these two cases. In all mechanical models discussed so far, we have A = 1 

The case k ~ I corresponds to amplification or reduction of stresses and rates of 

extension in the connection between internal and external variables. 

A model in which such is the case is presented in figure 1. This model, which 

-because of its characteristic shape- will be called "the trianEle model", is de- 

scribed by the complete set of equations (4) with n ~ O, ~ ~ 0 and A ~ I. Since (4) 
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is similar to the general expression (2.17) the triangle model may be considered also 

as a symbolic representation of the general theory, described in section 2. For that 

reason, in the rest of this paper we will also refer to the model described in sec- 

tion 2 as the "triangle theory". 

I 

? 
=i 

= T  
i 
I 

= ( 7  

Fig .  1 The t r i a n g l e  Model 

3 . 2  T h e  e l a s t i c  d u m b b e l l  m o d e l  

As a first application of the triangle model to a microscopic model we consider the 

elastic dumbbell model. This model is used to describe approximately some of the 

theological properties of dilute solutions of flexible macromolecules. For an exten- 

sive discussion we refer to chapter 13 of ref. [7]. Here we recall that a dumbbell 

consists of two beads on which hydrodynamic forces are acting, connected by a spring. 

The spring vector will be denoted by ~ and the configurational distribution function 

by @(~, t). 
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In order to apply the triangle model to the dumbbell model, we first have to define 

the variables ~, F, ~ and @. This means that a level of description has to be speci- 

fied. We start at the (T, ~/ H, ~)-level, so 

z=I ; b=L 

3A @=@ ; g=g=~@ 
( 3 . 2 - 1 )  

Here T is the macroscopic stress tensor; L the velocity gradient tensor and A = A-{V} 

the free energy, considered as a functional of the distribution function @ ~ @ Lq, t). 

In the present case we have 

A{@} = nkT S @ into d3~ (3.2-2) 

in which n is the number density of dumbbells, k Boltzmanns's constant, T the tempe- 

rature and @o the equilibrium distribution. 

This functional is (within an additative constant) the so called dynamical free 

energy, introduced by Doi [g]. (see also Sarti and Marruccl [9]). 

The associated thermodynamic force, which has the significance of a chemical poten- 

tial in configuration space becomes 

3A @ ( 3 . 2 - 3 )  
- - nkT ( i  + in ,-- ) 3@ 

~o 

The rate of reversible storage of energy due to a change of @ may now be written as 

- 3@ at - I p ~-6 d3~ (3.2-4) 

On the other hand, the macroscopic power supply is given by the familiar expression W 

= ~ : L, so the dissipation becomes: 

a@ (3.2-5) A = ! : L - ~ ~ a"t 

F o r  t h e  m a t r i x  e s p r e s s i o n  ( 2 . 1 7 )  we a l s o  o b t a i n  

(3.2-6) 

W i t h  ~ a f o u r t h  o r d e r  t e n s o r ,  A a s e c o n d  o r d e r  t e n s o r  a n d  ~ a s c a l a r  

o p e r a t o r .  
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In order to determine the explicit forms of these quantities we have to consider the 

evolution equations and the stress-tensor espressions of the dumbbell model. 

First, from the diffusion equation 

2 a . ( ~ a  
a t  @-~ = - a_8~ (~ _U • ~)  + n-~ 8--~ a-~ #)  ( 3 . 2 - 7 )  

in which ~ is a friction parameter and # the chemical potential defined by (1), on 

noting that the first term in the r.h.s of (7) is odd with respect to L and the 

second term is even, we see that the tensor A becomes 

= - ~ (@ ~) (3.2-8) 

and that the operator ~ may be represented as 

-2~ 
= n--~ a--~ " @ ~-~ ( 3 . 2 - 9 )  

I t  i s  p o s s i b l e ,  by  u s i n g  d e r i v a t i v e s  o f  t he  D i r a c - d e l t a  f u n c t i o n  t o  e x p r e s s  # i n  a 

form such that the last term in (7) becomes of the form -8 m ~ in which, like in (4) 

the symbol m denotes an integration in configuration space. We will not use this re- 

presentation here, and represent ~ by the differential operator (9). We now consider 

the stress tensor expression. We first calculate the reversible part from (2) and 

and (6): 

~R= A T I ~ = ~ , A = 

= nkT I (i - in L) (- ~o ~-~ 0 ~) d3~ 
a 

= nkT ~ (a___ in ~--) (~ ~) d3q 
as ~o 

= nkT ! + n <flg> (3.2-10) 

a 
with - fI= -kT ~-~ n @o' the so called connector force. In this way the "Kramers form" 

of the (reversible part of the) stress tensor is obtained. 

The total stress tensor expression for the dumbbell model is given by 

= 2 n ~ - nkT ! + n <fl ~> (3.2-11) 

I 
in which D = ~ (L + LT) • The first term of the r.h.s, is the solvent contribution to 

the stress tensor. Being odd in L this term is the dissipative part TD of ~. So, form 

(6) and (II) we obtain for the tensor ~: 

= 2W I (3.2-12) 
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in which ! is a fourth order tensor, defined by 

i 
llJkm = ~ (~Ik ~Jm + (~im &Jk ) (3.2-13) 

The results (8). (9), (10) and (ii) may be collected now in the following matrixs 

expression: 

[ T ]~_6_0@ = [[[2 7}I :_~_~(@a= g): n--~-2O-- (@ g) " ] [ L l a g O _ _ g a  , @ ~ -~- (3 .2 -14 )  

This result, together with the free energy expression(2) contains all relevant infor- 

mation of the elastic dumbbell model at the present level of description. 

We now change to a second level of description. Here we do not take the whole distri- 

bution function ~ but the configuration vector g as the variable of state. This will 

be done however in an average sense, namely such that ~ is not the actual rapidly 

fluctuation rate of change of g of an individual dumbbell due to the thermal motion, 

hut a flux, proportional to the diffusive flow in configuration space. It is the flux 

which is also present in the equation of continuity is configuration space: 

ae a 
a~ = - ~ _ "  (~ ~) (3 .2 -15 )  

The reversible force, associated with g may be obtained by substitution of (15) in 

(14) and ingretation by parts: 

= - f  ft ~ • (VJ cl) dacI = J" V# ~ " Cl dacI m n < m • 

In this expression m is defined as 

_m - n Oci kT ~-~ in O- ~ 

and 

~, :m.q  

: n <a> 

(3.2-16) 

The vector m is the thermodynamic force associated with the gradient of the chemical 

potential ~ in configuration space. It may also be interpreted as the resultant of 

minus the Brownian force fB = -kT ~-~ In @ and the connector force fl = _ kT ~ in @o" 

The quantity a in (16) may be considered as a density in configuration space of the 
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rate of change of the free enerEy per dumbbell, associated with the flux ~ discussed 

above. This makes it possible to apply the triangle model now to one dumbbell. 

In that case we have 

]1' = _m , ¢ = Cl (3 .2 -17 )  

And instead of the total stress tensor ! we now use the corresponding tensor ~, 

defined by 

T = n J" ~ T d 3 =n <T> (3.2-18) 

The quantity ~ will be called a stresslet. The total power supply may be written now 

as 

with 

W = T : L = n <T> : _L = n <w> 

W ---- T : n 

(3 .2 -19 )  

(3 .2 -20 )  

the local density In conflguratlon space, corresponding to the total power W. From 

(20) we see that in the present description the quantities Z and F defined in (2.1) 

become: 

Z = T , r = L (3.2-21) 

The matrix representation analogous to (2.17) becomes: 

[1[,' = °' ::] I:] (3 .2 -22 )  

In this case ~ is a fourth order tensor A a third order tensor and B a second order 

tensor. The explicit form for these tensors may be obtained from some further proper- 

ties of the model. First, from the equation of motion 

2 
cl  = I., • c l  - -~ m ( 3 . 2 - 2 3 )  

% 

in whlch ~ is a friction coefficient, one obtains 

s o  

"R 
cr = _L - ~I = A : L (3.2-24) 

A = 1 ~t ( 3 . 2 - 2 5 )  = w 
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and 
• D 2 

: - ~ m = ~ " ( - m )  ( 3 . 2 - 2 6 )  

SO 

2 q = ~ ! (3.2-27) 

From (22) and (25) we obtain for the reversible part of the stresslet 

R A T x = • m = m • A = m ~ (3.2-28) 
-- = 

In accordance with the Kramers form (see form ref. [7]) 
8 ¢ 

TR : n < m_.q> : n k T ~ ( ~ In ~o ) ~ ~ d3g (3.2-29) 

The dissipative part of ~ is similar to the first term m (ii) given by 
D 2 

T = -- • D m ~) : L (3.2-30) 
- n - - - 

SO 

n = 2 n__ I (3.2-31) 
- -  n = 

with I ,  given by (13) 

The resu l ts  (25), (26), (28) and (30), co l lected in matr ix form, become: 

= (3.2-32) 

Instead of taking T and L as the macroscopic variables In which the external power 

supply is expressed one also may write 

W = f • d (3.2-33) 

in which L is the hydrodynamic (external)  force act ing upon a dumbbell and ~ = L • 

the r e l a t i v e  v e l o c i t y  of  the f l u i d  f low at i t s  end points. 

The matr ix  representat ion (32) then becomes: 

- !  
(3.2-34) 

This form expresse the equilibrium of forces : f = m and the Stokes law 

= ~ (i - ~) We see that again, the skew symmetry of the off-diagonal 

elements of the matrix is obeyed. A final description that we will coslder in connec- 

tion with the elastic dumbbell model is one in terms of the configuration tensor 

= < g ~ > (3.2-35) 

as a variable of state. A closed description at that level is possible if the free 

energy A can be expressed explicitely as a function of S. In the case of linear dumb- 

bells such is the case and we have 

A = - I_ n k T log (det S__) + I_ n K t r  S__ (3.2-36) 
2 2 
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w i t h  k = t h e  s p r i n g  modulus  o f  t he  d u m b b e l l s .  The e x p r e s s i o n  (36 ) ,  f i r s t  o b t a i n e d  by 

Grmela and C a r r e a u  [6 ] ,  i s  e n s i s t e n t  w i t h  t he  Booy-Wiegen [10] e x p r e s s i o n  f o r  t h e  

c o n f i g u r a t i o n  d i s t r i b u t i o n  f u n c t i o n  in  t he  e x p r e s s i o n  (2) o f  t h e  f r e e  e n e r g y .  The 

thermodynamic  f o r c e  c o n j u g a t e  w i t h  S i s  o b t a i n e d  by d i f f e r e n t a t i o n  o f  (36) .  

In  t h i s  way we g e t  t h e  v a r i a b l e  N a t  t h e  c o n f i g u r a t i o n - t e n s o r  l e v e l  o f  d e s c r i p t i o n :  

E = M - aA _ I kT s-i) (3.2-37) 
- aS 2 n~ (! - E-- 

Again, we will show that a matrix representation of the form 

[:], = [° °T ] I L I A  o (3.2-38) 

applies and specify the matrix elements 2, ~ and 6" 

To this end an expression for ~ is needed. This may be derived by noting that 

= <~ S + S ~> in which ~ is given by (23). 

If subsequently the result (21) for m is used one obtains for the case of linear 

springs. 

= L • S + S • L T + 4kT T (! - ~ ~) (3.2-39) 

From (38) and (39) it follows that 

AiJkm = ~Ik SmJ + Sim ~Jk (3.2-40) 

and 
4 = ~-~ ~ (3.2-41) 

The dissipative part of the stress tensor is given by ! D = 2W 2, so analogous to (30) 

we have ~D = ~ : ~ with 

= 2~ ~ (3.2-42) 

The reversible part is given by the Kramers form (29) with, in the present case fl = 

K ~, SO 

T R nkT (~--- - = kT ~ - l) (3.2-43) 

and we see from (38), (40) and (43) that indeed 

T R = A T : M 
-- = -- ( 3 . 2 - 4 4 )  

It is important to note that the consistency of the evolution equation (39) and the 

stress tensor expression (43) is only obtained if the correct expression (36) of the 

free energy is used. This point (see also Maugin and Drauot [2]) was overlooked by 

Lhuillier [I] who used a quadratic form for the free energy function A(S) and arrived 
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at the conclusion that a convection laws similar to (39) (i.e. based upon the Oldroyd 

upper convective time derivative ~ = S - L • S - S • L T) are incompatible with the 

Kramers expression of the stress tensor. Instead, Lhuiliev obtains 
~A 

TR = 2 ~_, S , the so called Eringen "thermodynamic microstress tensor" as the cor- 

rect stress tensor expression in this case. We have now seen, however that a con- 

sistent structure tensor formulation of the elastic dummbbell model is possible with 

as well an Oldroyd upper convected derivative in the evolution equation as a Kramers 

expression for the stress tensor. 

3.3 The rigid dumbbell model 

It is interesting to see how constraints may be incorporated in the present forma- 

lism. This will be illustrated now for the rigid dumbbell model. This model is very 

similar to the elastic dumbbell described in the previous section. The difference is 

the rigidity constraint: Igl = q = constant. 

As a consequence the connector force fI is no longer a function of ~, but a constrai- 

ning force, determined by the equilibrium of forces in the ~-direction. It has been 

shown [II] that the treatment of the rigidity constraint is facilated, by using the 

projection operator 

P = 1 - e e ( 3 . 3 - 1 )  

with e = ~/l~l a unit vector in the direction of g. We shall see that this operator 

also plays a prominent role in the present treatment. 

We start with configuration-space level of description. Similar to (2) the free 

energy then becomes: 

A{~} = nkT I ~ in @ d2~ (3.3-2) 

and the corresponding chemical potential: 
aA 

= ~ = nkT (I + in ~) (3.3-3) 

The diffusion equation may analogous to (3.2-7) be expressed as 

a~ a • (~ P • L • e) + 2 a aN a-7 =a~ - ~ a-~" ( v ' ~ )  
- n < q  -- -- 

(3.3-4) 

If a matrix expression similar to (3.2-6) is defined one obtains from (4): 
a 

A .... ( @ P e) (3.3-5) 
- ae 



231 

and 
2 0 0 

n ~ q  

The stress tensor for the rigid dumbbell is given by 

(3.3-6) 

_T = 20 D + I n @ q2 <e e e e> : D + nkT <3 e e - I> 
2 

( 3 . 3 - 7 )  

The first two terms of the r.h.s, consltutes the dissipative stress ! D, so we have 

= 2n I + t g2 = ~ n ~ <e e e e > (3.3-8) 

The last term in (7) is the reversible stress Tn. Similar to (3.2-10) it may be 

proved that also In this case we have 

! R = ~ * A ~ I ~ A d 2 ~ ( 3 . 3 - 9 )  

So, the stress tensor expression (7) is compatible with the formalism of section 2 

Analogous to (3.2-14) the matrix formulation of the rigid dumbbell model at the 

present level of description becomes: 

a 

= [ - ( 3 . 3 - 1 0 )  
a@ - 2  a o -~--6 ('/' -P- e) : ~ p, 

n ~ cr 2 

At the (T,k / ~, ~) - level of description the thermodynamic force becomes 

a~ = 8 
m = ~ k T ~ in ~ (3.3-11) 

and the equation of motion is given by 

e = P • L • e - --2 m (3.3-12) 
2 - <g 

If, again, we define the stresslet T by _T = n <T>, from (I0) and the stress tensor 

expression (7) the following matrix representation may be obtained: 

2 
T_ ( ~ -  I + - ~  e e e e): -(_P e)  T _L 

= ( 3 . 3 - 1 3 )  

e P e  : - - - ~ 2  1 -m 
~t 2 - 

In verifying the equality ~R = n <TR> = n <m • P e> it should be noted that 

a~ _ _d 2 a [(1-e~_)_e] d 2 I ~_  • (1  - e e )  e e_ = - I  ~ ~ • _ _ e = I ~ (3  e_ e_ - I )  d2e 
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The r e s u l t  (13)  may be  b r o u g h t  i n  a form w h i c h  i s  more s i m i l a r  t o  t h e  e l a s t i c  dumb- 

b e l l  r e s u l t  ( 3 . 2 - 3 2 )  by d e f i n i n g  a t h e r m o d y n a m i c  f o r c e  

8U ( 3 . 3 - 1 4 )  

in which ~ = n (g) is an arbitrary extension of the function ~(e) to the 

space. Then we have: 

= g P • ~ (3.3-15) 

whole g 

If we also use that ~ = g • e, (13) may be written as  eeeec  T]IL 
(3.3-16) 

From (16) the description on the (~, L / ~, ~)-level is readily obtained by writing 

Z = f ~ (3.3-17) 

w h i c h  f o l l o w s  

u s i n g  t h e  f a c t  

The r e s u l t  i s :  

from the Kirkwood-Kramers expression of the stress tensor [7], and 

t h a t  d = L • ~. 

(i- _P)- _ P p  2 "[ d- 1 

- ~ P- -~q 

Note that the corresponding equation (3.2-34) for 

is obtained if we take P = 1 

(3.3-18) 

the case of elastic dumbbels 

The theory of Dol [12] for nematic liquid crystals may be formulated very similar to 

equation (16). In that case the viscous stresses are neglected, so the [l,l)-element 

of the matrix in (16) becomes zero. Furthermore a mean field potential @(e) is intro 

duced, in order to describe the tendency of the rods to assign in preferred direc- 

tions. Instead of (ii) we then have 

8 8 
m = kT ~__ I n  V) + ~ (3.3-19) 

Usually ¢ is taken to be the Maier-Saupe potential: 

= const _ _3 NkT e e : S 
2 

(3.3-20) 

in which S is the structure tensor, defined as 

= <e e _ _I 1> 
- -  - -  3 - -  

( 3 . 3 - Z l )  
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The evolution equation for the rotary motion of the rods is given by [12] 

a . (.,. a i n  @ v ,  a 
aVi = _ am . (VJ P " L • e)  + 5 r ~-~ - - 7  + @ ~ ~ )  ( 3 . 3 - 2 2 )  at a_e _ _ _ 

in which D r is an average rotary diffusivity. 

From this expression we see that 

e = P • L • e - ~T  m_ ( 3 . 3 - 2 3 )  

which is indeed similar to the expression of ~. So we expect that in this case 

[1 I ° : [:1 e (_P e_) k~T ! • - 

( 3 . 3 - 2 4 )  

In order to prove this, we still have to verify the expression for x, implied by 

(24). To this end we calculate 

a <a~ . ( I  - e e )  e>. ! = n <T> = n <kT ~_ i n  @ • (1 - e e ) e >  + n ag - 

The first term delivers the dilute-solution result nkT <3 e ~ - I> = 3 nkT S. 

For the second term, by using the Maier Saupe potential (20) we obtain 

-3n UkT (S • S - S: <e e e e>), so 

_T = 3 nkT S_ - 3n UkT (S_. • S - S: <e e e e> ( 3 . 2 - 2 5 )  

This result is indeed in accordance with the stress tensor expression obtained by 

Doi. So we see that the matrix representation (24) is consistent with the theory of 

D o l .  

In the theory of nematics one often employs the preaveraging assumption. 

<e e e e> = <e e> <e e> ( 3 . 3 - 2 6 )  

In that case a closed description at the (T,L/S,M) level is possible. Noting that the 
3 

free energy function corresponding to the Maler-Saupe potential is given by A~ = - ~n 

UkT S:S we obtain for the thermodynamic force M: 

aA@ 3 
= aS-~- = - ~n UkT ( 3 . 3 - 2 7 )  

It can be seen that the equation for ~, see ref. [13], obtained from (22) may be re- 
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presented as 

= A : L - ~ : M ( 3 . 3 - 2 8 )  

with, 

A : L = ! (L + L_ T) + L • S + S • L T - !(L + L T) : S 1 
- 3 3 - - 

- (L + L T) : ~ ~ (3.3-29) 

and, 

: M = 4 D r [(i u !S: M 1) + U S S: M (3.3-30) - - n UkT - 5 ) ~ - U (S • M - 3 .... 

From (29) we calculate 

AT _ 1 1 : M = ~ (M + M T) + M • S + S • M - ~ (M + M T) : !_S 

- (M__+M_ T) : s_s 

( 3 . 3 - 3 1 )  

o r  by eliminating M with (27) 

A T : M_ = 3 n kT (_S - U S • S + U S : S S) ( 3 . 3 - 3 2 )  

Within an isotroplc term this is indeed the stress tensor expression, obtained by Doi 

[13]. So, again the formalism of our triangle model applies. The matrix representa- 

tion in this case becomes of the form(3.2-38)with W = O, ~ and ~ defined by (29) and 

(30) and a thermodynamic force M, given by (27). 

3 . 4  Reptation models 

The concept of reptation, was proposed originally by de Gennes [14] and used in a 

rheological model by Doi and Edwards [15] and by Curtiss and Bird [16] in a different 

way. 

We will follow here the approach of Doi and Edwards in which the polymer molecule is 

treated as a chain, confined in a tube. The tube consists of N segments of a length 

a. The average contour of the molecule coincides with the center line of the tube and 

is called the "primitive chain". Due to the thermal motion at the molecule the primi- 

tiva chain performs a diffusive motion along its own contour (reptation) and tube 

elements are created and destructed at the endpoints of the primitive chain. 

The motion of a primitive chain segment consists of two parts : a convective part and 

a diffusive part. 

The convective part is fully determined by the motion of the tube segments and causes 

a rate of rotation. 
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e = L • e- e • D • e = P e : L ( 3 . 4 - 1 )  

of the segment-orientation vectors e. In the second expression (I) we have used the 

projection operator defined by (3.3-I). The diffusive part of the motion of the seg- 

me~ts determines the motion of the chain along the tube. This motion is governed by 

the diffusion law 

s = - D a in______~ (3.4-2) 
as 

in which D is a diffusion constant, s the curve linear position along the tube and @ 

= @ (e, s, t) a probability density for one segment of being at a position s with an 

orientation _e at time t. The function @ may be represented [15] by the integral ex- 

pression: 

t ^ 
,pc , s, t )  : c t -  t ' , s )  , C e ' )  d d r '  C3.4-3)  

- a  

in which KCt - t' ,s) a memory function determined by the diffusion process along the 

rope, e_-(e',t',t) = F_t(t') • e'/ l(_Ft(t') • e'l (with Ft(t') the relative deformation 

gradient) a function which determines the relation between the orientation (e') of a 

tube element at the tense of creation (t') and its orientation at the present tense 

(t) and ~(e') is the orientation distribution function of tube elements at the con- 

stant of creation. 

We also will use the averages of K along the tube.: 

I t' $(t - t') = [ I K(t - ,s) ds (3.4-4) 

The calculation of the stress tensor in the Doi and Edwards theory is based upon the 

expression 

= n ~ <~ e e> ds (3.4-5) 
o 

in which ~ is the tension in the chain. From the theory of rubber elasticity one 

obtains: 
3 kT 

- ( 3 . 4 - 6 )  
a 

I f  (3)  i s  u s e d  t o  p e r f o r m  t h e  a v e r a g i n g  i n  (5)  and  (6)  i s  s u b s t i t u t e d  we o b t a i n  

t P 

: 3 n N kT ] J @(t - t ' )  <e ~>'  d t '  ( 3 . 4 - 7 )  
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in which < >' denotes an average with respect to the creation distribution function 

@(e'). In the derivation of (7) we also have used the definition (4) of #. 

We will show now in which way it is possible to formulate the Doi and Edwards theory 

in the framework outlined in section 2. To that end we have to define for this case 

the tensor T, the vector m and the matrix elements in the expression 

6 A ~ _ ( 3 . 4 - 8 )  

From (i) we see that 

A = P e (3.4-9) 

and 

~8 = 0 ( 3 . 4 - 1 0 )  

Since in the Doi and Edwards theory no dissipative stresses occur, we also have 

n = ~ (3.4-11) 

and remaining problem is to verify that T = A T . m is consistent with the stress ten- 

sor expression of Doi and Edwards. To this end, like in our previous examples we use 

as the thermodynamic force 
a 

m = kT ~_ in @ (3.4-12) 

With the form (i0) of ~ we then have 

T = (P e)T . m = m • P e : m e (3.4-13) 

Here we have used the expressions (3.3-I) and (13) of P and m respectively. 

By performing the average <~> with the distribution function (3) and comparing the 

result with the stress tensor expression (7) is may be shown, [note that 

@~ #) e d2e = I (3 e e - !) @ d2 ~)], that 

L jm'No~ <~> ds + isotropic term (3.4-14) I= 

So we see that the quantity ~_ introduced above is indeed the appropriate variable to 

be used in the matrix formulation. We also obtain the following result 

- = = ( 3 . 4 - 1 5 )  

6 (P e) : • - 

It is possible to include the variable s in the the theory. To this end we introduce 

a thermodynamic force associated with the diffusive motion of the chain. This force 

is the thermodynamic potential 
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= kT a in_______~ (3.4-16) 
as 

The equation (2) may be written then as s = - (D/kt) n and the matrix form (15) be- 

comes: 

0 ." 

= (P e) : 

fi 

-(_P. _e)T fi • 

ft. O. 

D 
0 • k"-'t 

(3.4-17) 

We see that ~ only contributes to the flux s and not to the tensor T. 

A generalisation of the Doi and Edwards theory in which frictional forces between the 

chain and the tube wall were taken into account was presented first by Jongschaap 

[17] (see also Geurts and Jongschaap [18]). This model, which was called the "Repta- 

ring Rope Model" was shown to be equivalent to the theory of Curtiss and Bird. The 

main difference with the Doi and Edwards theory is an extra term in the stress tensor 

of the form. 

T D = n N 2_ s(L - s) K(t - t',s) <e e e e>: D ds dt' (3.4-18) 

Comparing this with (14) and (17) we see that the matrix representation of Reptating 

Rope model becomes: 

Z ~ s(U-s) e e _ e e  : - (P Te) • 0 L 

e = P e 0 0 -m (3.4-19) 

D 
s o : o • k-i - ~  

Although we now have seen how the triangle model may be applied to reptation models 

some point remain to be clarified. First we see that a front-factor 3 in the stress 

tensor expression is obtained. This factor arises from the averaging in orientation 

space and is similar to the same factor in reversible part of the stress tensor (3.3- 

13) of the rigid dumbbell model. The factor 3 is also present in the theory of Doi 

and Edwards but seems to have a different origin there. It does nog appear in the 

Curtiss Bird theory or in the Reptating Rope Model. The main difference is that in 

our present formulation the thermodynamic force m associated with the orientation 

distribution of the segments plays a prominent role whereas in the original reptation 

theories it is the tensile force along the chain which contributes to the stress. 
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The Transient-Network Model, originally developed by Green and Toblsky [18] Lodge 

[191 and Yamamoto [20]is used to describe the rheological behaviour of polymer melts 

and concentrated polymer solutions. In the model, the system of highly entangled 

polymers is represented by a rubberlike network of segments. The network is not per- 

manent since the segments are created and annihilated at specified rates. 

Before describing it in our present formalism we will first briefly summarise some 

basic notions of the Transient Network Model. The number density $(g,t) of segments 

with a specified configuration may, analogous to (3.4-31 be expressed as 

t ^ 
= [ [n ( t , t . i  ' d t '  ( 3 . 5 - 1 1  
--CO" 

# J 

In this expression n(t,t') is the number of segments created per unit time at time t' 

and still present at time t, 

.q = F t t ( t  ' )  • cl' ( 3 .5 -2 )  

A function specifying the motion of the segments and @(g') the creation distribution 

function of a segment which usually is assumed to be afunctional. The equation (2) 

specifies the assumption of affine motion of the segments. This may also be expressed 

as 

=L_ • g ( 3 . 5 - 3 )  

The k i n e t i c s  o f  l oss  and c r e a t i o n  o f  segments may be s p e c i f i e d  by the  p r o p e r t i e s  o f  

the f u n c t i o n  ~ ( t , t ' ) .  At cons tan t  t ' ,  the change o f  ~ w i t h  t i s  due to  l oss .  Th is  i s  

expressed by the loss  f u n c t i o n  h ( t ) ,  d e f i n e d  by 

a ~ ( t , t '  ) 
a t = - h ( t )  ~ ( t , t ' )  (3 .5 -4 )  

On the o t h e r  hand n i t '  , t ' )  d t '  i s  the number o f  segments c rea ted  i n  the t ime i n t e r -  

v a l  [ t ' , t '  + d t ' ] ,  t h e r e f o r e  a c r e a t i o n  f u n c t i o n  g ( t ' )  i s  d e f i n e d  by 

( t ' , t ' 1  = n o g ( t ' )  ( 3 . 5 - 5 )  

I n  t h i s  e x p r e s s i o n  n o d e n o t e s  t h e  e q u i l i b r i u m  v a l u e  o f  t h e  number  d e n s i t y  o f  s e g m e n t s  

n .  The r e l a t l o n  b e t w e e n  n and  n i s :  

t 
n i t ) = [  ~ ( t , t ' )  d t '  ( 3 . 5 - 6 )  

--CO 

From t h i s  e x p r e s s i o n  and  (4)  and  (5) t h e  f o l l o w i n g  r a t e  e q u a t i o n  f o r  n i s  o b t a i n e d :  
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dn 
d-"t = g n o  - h n ( 3 . 5 - 7 )  

The solution of (7) with the initial condition (5) may be expressed as 

t 

- ~ h(t'') dt'' 
t- 

n(t,t') = n o g(t,t') e (3. s-s) 

We will now apply the triangle theory to the transient network model like in some of 

the previous applications we take the one-segment contribution T to the stress tensor 

as the stress variable, so 

= r ~(g,t) ~ d3~ (3.5-9) ! 
J 

The matrix representation then becomes: 

with 

0 = 

= !g 

O_ 

-(l g)T 0 

o_ o_ 

g 
o_ k-T 

m=kg 

the sprlng-force in a segment and 

= kT (h n - n o) 
g 

(3.5-10) 

(3.5-11) 

(3.5-12) 

a chemical potential associated with the change in the free energy of the network due 

to a change of n. In principle this quantity could be derived form details of the 

entanglement-desentanglement previous regarded as a chemical reaction, but, following 

Ajjl at al [33], we use the form (12)suggested by the rate equation (7) of the 

transient network model. The expression for T obtained form (10) and (11) is in ac- 

cordance with the usual stress tensor expression T = k [ @ ~ ~ d3~. Substitution of 

as given by (I) and making use of (2), and (8) results in the constitutive equation 
t 

t 
;~ h(t'') dt'' 

= n o kT ~ g(t') e t ~t-lt') dr' (3.5-13) 

in which Rt(T) = Et(T) • Et ( T)-I 

Returning to the matr ix expression (10) we w i l l  consider now some posslble modif ica- 

t lons o f  the model. F i r s t  l l ke  has been done in the case of  the e l a s t i c  dumbbell 

model (sect ion 3.1) one may change the level  of  descr ipt ion.  For instance by using 

the d i s t r i b u t i o n  funct ion @(e,t) or a l t e r n a t i v e l y  a st ructure tensor. S = <g g> as a 

state var lab le .  We w i l l  not discuss these modif icat ions here. An i n te res t i ng  change 
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at the present level of description however is a change of the convection law. A well 

known alternative is the so called Gordon and Schowalter [22] non affine convection 

law, also used in the Phan Thien-Tanner [23] formulation of the Transient Network 

Model. In that case instead of (3) we have 

= L  • ~ -  ~ • s ( 3 . 5 - 1 4 )  

i n  w h i c h  D = ~(L + L_T), t h e  r a t e  o f  s t r a i n  t e n s o r .  T h i s  may be  w r i t t e n  a s ,  

The skew s y m m e t r y  o f  t h e  m a t r i x  i n  ( 2 . 1 7 )  t h e n  i m p l i e s  t h a t  

= ( I  - ~) ~ ~ ÷ ( i s o t r o p i c  t e r m )  ( 3 . 5 - 1 6 )  

T h i s  i m p i i e s  t h a t  a I s o  i n  t h e  s t r e s s  t e n s o r  e x p r e s s i o n  a f a c t o r  ( i  - ~)  s h o u l d  be 

i n c l u d e d .  The p o i n t  t h a t  i n  t h e  c a s e  o f  n o n - a f f i n e  m o t i o n  t h e  s t r e s s  t e n s o r  e x p r e s -  

s i o n  s h o u l d  be  m o d i f i e d  h a s  b e e n  d i s c u s s e d  i n  an o t h e r  c o n t e x t  by  L a r s o n  [24] and  

a l s o  by Maugin  and D r o u t  [21 and by  GrmeIa  [3 ] .  As p o i n t e d  o u t  by  L a r s o n  [ 2 4 ] ,  t h e  

p h y s i c a l  r e a s o n  f o r  t h e  e x t r a  f a c t o r  i n  t h e  s t r e s s  t e n s o r  i s  some k i n d  o f  " s i i p "  o f  

t h e  n e t w o r k  s t r a n d s .  We w i l l  i l l u s t r a t e  t h i s  now f o r  t h e  c a s e  o f  s l i p  i n  e n t a n g i e -  

ment .  I n  f i g u r e  2 a p i e c e  o f  a p o l y m e r  c h a i n  b e t w e e n  two e n t a n g l e m e n t s  i s  shown.  

I f  t h e  f o r c e s  f and  m, and  t h e  v e c t o r s  g and  s a r e  d e f i n e d  a s  i n d i c a t e d  i n  f i g u r e  

2. C o n s e r v a t i o n  o f  e n e r g y  r e q u i r e s  ( i n  t h e  c a s e  o f  no f r i c t i o n  i n  t h e  e n t a n g l e m e n t s )  

t h a t  

£ • ~ = m • ~ ( 3 . 5 - 1 7 )  

So, if we introduce a slip factor a by requiring 

= a ~ (3 .5 -18 )  

we have, 

I 
= - f (3.5-19) a - 

(In the case represented by Figure 2b we would have a = 2.) The stress tensor in a 

network corresponding to the entanglement structure of Figure 2a would become. ! = 

n<f S> = n a<m ~>. If in this expression we take m = K ~ with s = ~ (since at any 

instant the total part of the chain between two entanglements contributes to the 

elastic stress), we obtain, 

I = nK a<~ ~> (3.5-20) 

in accordance with our previous result (16). 
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(a; 

~m 

s_ ~ 

q 

(b) 
Figure 2 

Non affine motion due to slip in entanglements : schematic picture of the entangle- 

ment structure (a) and mechanical analogue (b). The chain vector s of a part of the 

chain changes at rate that differs from the rate of change of the vector g between 

two entanglements. The elastic force m in the chain also differs from the force f, 

acting ~l..,v,, the entanglements. 

Also in this case the situation may be clearly summarised in a matrix representation. 

At the (f,~/m,~) - level we have 

= lea a]o [:] ( 3 . 5 - 2 1 )  
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and at the (T_,L_/_s,m) - level :with T_ = f (I 

[ T_ Is = [ 0 a _i (I -(a I-(1)T ]0_ [ L_ ]m (3 .5-22)  

316 C o n f i g u r a t i o n  t ensor  models 

In the case of the elastic dumbbell model (section 3.1) we have seen an example in 

which a closed formulation of the theory is possible at the (!,L/M,S) - level. In 

that case the structure tensor S was defined by (3.2-35) in terms of microscopic 

variables and its properties were derived from the underlying configuration-space 

theory. In some cases, it may be usefull to introduce the properties of the structure 

tensors without an explicit reference to molecular theories. This possibility - In 

fact - is the main advantage of the use of different levels of description in combi- 

nation with a consistent thermodynamic formulation. 

A nice example of a structure tensor theory which is a model proposed by Giesekus 

[27,28]. In this theory, which may be considered as a generalisation of the elastic 

dumbbell model described in section 3.2.the reversible part of the stress tensor is 

assumed to be of the form 

~R = ~(C _ ! )  (3.6-1)  

This expression is  consistent  w i th  our previous resu l t  (3.2-43) i f  we take ~ = nkT and 
K 

For the tensor C, the fo l l ow lng  evo lu t ion  equation is  proposed: 

= - B • T R (3.6-2)  

w i th  C = C - L • C - C • L T, the upper convected d e r i v a t i v e ,  and _B a k lnd  o f  genera- 

l i zed  m o b i l l t y  tensor which is  taken to be 

= ~ ( !  + a ~R) (3.6-3)  

In order to compare t h i s  w i th  our previous resu l ts  we note that  from 

~__R = L • C * C • L T = A : C (3.6-4)  

i n  which ~ is  o f  the same form (3.2-40) as in the dumbbell model. With t h i s  expres- 

slon for ~, on using the result T R = A T :M we obtain from (i) that 
I = ~ ~ (! - G -1) (3.6-5) 

which is indeed in accordance with (3.2-37) 

The tensor ~ in the expression ~B = _ ~ : M may be obtained now by using the result 

~D = _ B • T n, which follows from (2) and the expressions (I), (3) and (5) for TR, 

and M. The result is 

= - B • A_ (3.6-6) 
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If this is compared with the elastic dumbbell result (3.2-41) one sees that the 

tensor B generalizes the mobility factor 4/n ~. In the case that a = 0 the elastic 

dumbbell result is reobtained. The viscous stress in the Giesekus model has the usual 

form ! D = ~ : k with ~ given by (3.2-42), so the model may be summarizes now as 

follows: 

['], {': 0:i (3.6-7) 

with A, B and M given by (3.2-40), (3) and (5) respectively. By elimination of M, 

and ~ the following constitutive equations may be obtained: 

y_D = 2 W D (3.6-8) 

T R + A _~R + a T R • T R = 2 8 - I  _D (3.6-9) 

1 
with A - 

The Giesekus model is a good illustration of how a slight modification of the dumb- 

bell model, expressed at the configuration-tensor level of description may cause sig- 

nigicant changes in the constitutive equations. 

In the Giesekus model, the treatment was partially based upon the underlying molecu- 

lar description. In other models at the configuration- tensor-level the approach is 

entirely at a macroscopic level. An example is the theory of Leonov [25] based upon 

the concept of a recoverable strain and theories based upon Eckarts [29] concept of a 

variable relaxed state. For further information about the latter class of theories we 

refer to a paper by Stickforth [30]. For our present discussion it is sufficient to 

know that in those theories the stress and the velocity gradient are decomposed in a 

reversible (elastic) and a dissipative (inelastic) part. 

So we have like before : T = T R + ~D but also : L = L R + L D. In order to compare this 

with our formalism we have to define ~R and LD in a consistent way. to this end we 

rewrite the dissipation form as follows 

A=T: L-M: S 

= T : L - M : A : A-I : S " 

=T: L-TR: L R 

in which (3.2-44) has been used and 

L_R = A-I : 

Instead of  ( I0)  one may also wr i te  

A = T  D : L + T  R : L D 

The phenomenological re la t i ons  according 

become : 

(3.6-10) 

(3.6-11) 

(3.6-12) 

to non-equilibrium thermodynamics then 
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T D ~ _¢T L [:o]= [: :]: (3.6-13) 

This, indeed, is the form obtained by Leonov [25], Stickforth [27] and others. In our 

present approach, however, it is possible to go one step further. If we start from 

our matrix expression (3.2-38)and eliminate M, S and ~ in the same way as in deri- 

ving(13), we obtain : 

T D ~ 0 L [:o]=[; :1 (3.6-14) 

with ~ A-I A-T = : ~ : which is of the same form as (13) but with one important d i f -  

ference, namely that the matrix now has the diagonal form. The meaning of the 

variables LR and L D becomes more clear in a schematic representation s imi lar  t o  the 

t r iangle model given in Figure 3. We see that ~R and ~D correspond to a mapping of 

the spring and dashpot inside the system. In the case that A = I ,  L R coincides with 

and ! R with M. In other cases these quantit ies w i l l  d i f f e r  from each other. 

From f igure 3 i t  can also be seen that the strain corresponding to L R is indeed 

the so called recoverable strain,  used in the Leonov Model: i t  is an e las t ic  recovery 

measured at the part of the system where the external variables ! and k apply. 

L 
L R - -  L D .~ 

Figure 3 

Representation of the model described by the equations 

(3.2-38] and (3.6-14) by the triangle model (see also Figure I) 

i ° 

R 
= T  



245 

4. Discussion 

In this paper a theory was presented by which a unified treatment of various rheolo- 

gical models is possible. The theory may be considered as an extension of earlier 

work by Grmela [3] and others [1,2]. In our treatment the concept of a so called 

macroscopic time reversal played a central role. On the basis of this, an unambigious 

dlstinguishment between reversible and dissipative variables was possible and a uni- 

versal matrix representation (2.17) could be given. The skew symmetry of this matrix 

is in accordance with the Onsager-Casimir symmetry relations. 

In the applications, discussed in section 3, we have seen that this skew-symmetry may 

be used as a check on the consistency of the stress tensor expression with the evolu- 

tion equation of a model. In the network models with non-affine motion (sec. 3-6), 

for instance, it implies the necessity of an extra factor in the stress tensor ex- 

pression. In configuration tensor models the skew symmetry of the matrix in (2.17) 

may be used to construct the stress tensor expression, from a given evolution equa- 

tion. In section 3 some examples were given of application of our formalism to 

existing models. Our purpose there was not to obtain new results in the sense of new 

constitutive equations, but merely to demonstrate the capability and flexibility of 

the new approach. Only in the treatment of the dumbbell models (section 3.2 - 3.3) 

the level of description with functions as state variables and functional dependences 

was employed. In the other applications a tensor-formulation was sufficient. 

Nevertheless one should keep in mind that in future applications a functional formu- 

lation might be necessary. For instance in cases where nonlocal phenomena are impor- 

tant. The description could be based upon global fields instead of local variables of 

state ; this makes a functional formulation necessary. In this context the problem of 

the effects of domains on orientation and stress liquid crystals might be of 

interest. In the examples of section 3, in most cases only a reformulation of 

existing theories was obtained. The main advantage of the present formulation, how- 

ever is it shows in which directions modifications of the model are possible and 

also that those modifications fall into a few categories. Referring to the general 

equation (2.17) we first have : a change in the free energy functional A(@) and so of 

the expression for the thermodynamic stress : M(@), seemed of the viscous effects 

described by the quantities ~ and ~ and third a change of the coupling effect, ex- 

pressed by the quantity A. It has been shown that the latter 4.1 changes significant 

in the case of constraints and in the case of non-affine motion. So we see that our 

theory offers the possibility of analysing the implications of particular modifica- 

tions of a model in a systematic and consistent manner. 

In applying the theory to existing models sometimes new insight is obtained. For 

instance, in the case of the Doi and Edwards model, where we haven seen that the 



246 

stress is due to the thermodynamic force associated with the orientation of the tube 

segments, rather than a tensile force along the tube. We also have clarified the 

origin of the extra factor in the stress tensor expression due to non-affine motion. 

Finally, in section 3.7 we arrived at the result that the matrix (3.6-13) in the 

theory of Leonov and in similar theories should be diagonal. 

The use of different levels of description was only fully employed in the case of the 

elastic dumbbell model. In some other cases this could also be done, but we did not 

make an attempt to be complete here. Still it should be stressed that a change of 

level of description result in a considerable simplification of the problem. An ob- 

vious case is of course the change from the configuration space level to the struc- 

ture tensor level of description. The opposite change from the configuration space 

level to the level of forces and deformations of individual particles, however, is in 

many cases even more usefull. At this level, in fact, many of the examples that we 

have considered were formulated. In general one could say that our triangle modelcan 

be applied in any case in which a thermodynamic subsystem can be defined for which 

the free energy may be expressed as a function of functional of some state variables, 

a set of external variables by which the exchange of power with the environment is 

described and an evolution equation of the microstructure. 
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(Abstract): In most adhesive polymers, the energy G per unit area of peeled surface, 

is related to strong (non linear) dissipative processes in a thin ribbon ahead of the crack 

tip: we call this the junction region. The field variables inside the junction are the applied 

stress or(x), and the rate of opening ]~ of the junction width (h). For glassy polymers, the 

junction is often a "craze" with a complex set of fibrils linking the two sides[I][2]. For 

rubbery polymers, crazes are not observed, and the microscopic processes involved may 

possibly be described in terms of a simple "pull out" of polymer chains, after a certain level 

of chemical rupture[3]. Various forms of the constitutive law ~(h) have been proposed 

for these two distinct situations[4][5], and will be presented here. They are essentially 

characterized by three parameters. 

a) A threshold stress (~r~), which corresponds to plastic flow and crazing in glassy 

polymers, and to chemical scission processes in rubbers. 

b) A terminal value of the junction 3pening (hi) , which can be estimated simply in 

models of homogeneous "pull out", but which is less well understood for crazes. 

c) A friction coefficient Q = (da/d]~) in the high stress regime (a >cr¢). 

Having specified the relation cr(]~), the theoretical analysis of fracture (at a velocity 

V) incorporates another (integral) relation between ~r and h/2, which represents normal 

stresses and displacements at the surface of an elastic half space. These two coupled equa- 

tions can be solved analytically in terms of hypergeometric functions[6][5], when a(h) is 

a piecewise linear function. For glassy polymers, where a(]~) is often expected to be loga- 

rithmic, numerical studies are required[6][7]. In the piecewise linear models, an important 

parameter is the characteristic velocity V* = #/Q (where # is the shear modulus o~ the 

elastic matrix surrounding the junction). At V < V*, the stress cr(x) is nearly constant 

and equal to the threshold value cr~ in all the junction. The resulting adhesive energy 

G(V --~ 0) is simply etch/. At V > V*, most the stress sources are concentrated near the 

tip (where h = hi) , and in the linear models, one predicts G(V) ,'~ o'chlV/Y*[3 ]. For the 

glassy systems, on the other hand, one expects G(V) ,,~ In V as observed. 
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This general discussion will then be supplemented by a description of two especial 
points: 

1) In weakly cross linked rubbers, the adhesive energy G(V) is known -from work by 

Gent and Petrick[9]- to increase steeply with V, and to show a sharp peak. An interpre- 

tation of these features has been constructed in terms of viscoelastic losses far from the 

junction region[10]. 

2) Smectic A liquid crystals (composed of stacked liquid layers), usually respond to 

tensile stresses by classical undulation instability[11][12]. But "semi-smectics", made with 

an alternation of liquid/glassy layers, should (at least in thin samples) show a remarkable 

form of "lenticular fracture" with a cusp at the fracture tip. The features may be of 

interest for the mechanical properties of stratified coextrudates[13]. 
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RHEOLOGY OF HARD SPHERE SUSPENSIONS 

B.U. F e l d e r h o f  

I n s t i t u t  f u r  T h e o r e t i s c h e  Phys ik  A 

RWTH Aachen 

Templergraben 55, D -5100 Aachen 

A suspens ion  o f  r i g i d  hard spheres in  a v i s c o u s  i n c o m p r e s s i b l e  l i q u i d  

c o n s t i t u t e s  an a t t r a c t i v e l y  s imp le  r h e o l o g i c a l  model sys tem.  Such a 

suspens ion  may be r e a l i z e d  e x p e r i m e n t a l l y  as a c o l l e c t i o n  o f  s i l i c a  

spheres immersed in  an o r g a n i c  s o l v e n t .  The spheres are n e u t r a l  and 

can be made monodisperse w i t h  a r a d i u s  o f  about  1000 ~. In suspens ions  

o f  p o l y s t y r e n e  spheres in  wa te r  the spheres are charged and s u r r o u n -  

ded by a Debye c l oud  o f  smal l  i o n s .  The s t a t i c  s t r u c t u r e  f a c t o r  o f  

such a suspens ion  i s  w e l l  app rox ima ted  by t h a t  o f  a system o f  hard 

spheres w i t h  an e f f e c t i v e  r a d i u s  equal  to  the a c t u a l  sphere r a d i u s  

p lus  the Debye l e n g t h .  

On the  t ime sca le  seen in  a dynamic l i g h t  s c a t t e r i n g  e x p e r i m e n t  one 

may v i s u a l i z e  the system as a c o l l e c t i o n  o f  i n t e r a c t i n g  Brownian pa r -  

t i c l e s .  The spheres d i f f u s e  w i t h  a bare d i f f u s i o n  c o e f f i c i e n t  g i ven  

by the S t o k e s - E i n s t e i n  e x p r e s s i o n  D o : kBT/6~qa,  where T i s  a b s o l u t e  

t e m p e r a t u r e ,  q i s  the  shear  v i s c o s i t y  o f  the s o l v e n t ,  and a i s  the 

sphere r a d i u s .  For wa te r  a t  room tempera tu re  and f o r  a sphere r a d i u s  

a = 10 -5 cm t h i s  amounts to  D ~ 10 -8 cm2/sec.  The c o r r e s p o n d i n g  
o -2 

d i f f u s i o n  t ime sca le  T o = a2/D o i s  about  10 sec.  Th is  shou ld  be 

compared w i t h  the Brownian t ime sca le  T B = m/~, wh ich  is  the t ime in  

wh ich  a p a r t i c l e  o f  mass m and f r i c t i o n  c o e f f i c i e n t  ~ = 6~na loses i t s  

momentum. Th is  t ime is  o f  the o rde r  10 -8 sec , much s h o r t e r  than the  

d i f f u s i o n  t ime s c a l e .  As a consequence,  on the t ime sca le  o f  o rde r  

10 -4 sec seen in  l i g h t  s c a t t e r i n g  expe r imen t s  [ I ]  one may d i s r e g a r d  

momentum r e l a x a t i o n  and v iew the system as a c o l l e c t i o n  o f  d i f f u s i n g ,  

i n t e r a c t i n g  Brownian p a r t i c l e s ,  w i t h  a momentum d i s t r i b u t i o n  c lose  to  

a M a x w e l l i a n .  

We c o n s i d e r  N spheres in  a volume ~ w i t h  i n s t a n t a n e o u s  c o n f i g u r a t i o n  

= (~I . . . . .  RN ) .  The c o n f i g u r a t i o n s  are random, so t h a t  we must e n v i -  

sage a p r o b a b i l i t y  d i s t r i b u t i o n  P ( ~ , t ) .  On the  d i f f u s i o n  t ime sca le  

the e v o l u t i o n  o f  the d i s t r i b u t i o n  f u n c t i o n  i s  d e s c r i b e d  by the genera-  

l i z e d  Smoluchowski e q u a t i o n  [ I ]  
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@P(~,t) 
@t - Z " ~(~) " [~P + B(Z@)P] ( I )  

The dif fusion is influenced by hydrodynamic interact ions,  as incorpora 

ted in the 3Nx3N di f fusion matrix ~(~), and by di rect  interactions in- 

corporated in the potential @(~). The la t te r  has also a contribution 

from the wall potent ia l .  Finally B = I/kBT. The dif fusion matrix is 

given by the generalized Einstein relat ion 

~(~) = kBT ~(~) , (2) 

where ~(~) is the 3Nx3N mobil i ty matrix, which may in pr inciple be 

found from the solution of the l inearized Navier-Stokes equations. 

The Smoluchowski equation ( I )  has the equil ibrium solution 

Peq(~) = exp (-8~(~))/Z(B) , (3) 

where Z(8) is the normalization in tegra l .  The equation describes how 

an arbi t rary i n i t i a l  d is t r ibut ion P(~,O) tends to equilibrium in the 

course of time. In rheology one perturbs the d is t r ibut ion by imposing 

a flow on the solvent. Then Eq. ( I )  must be supplemented with a con- 

vection term proportional to the imposed flow velocity Zo(~, t ) .  

We consider in part icular  the osc i l la tory  l inear flow 

-imt (4 Zo( r , t )  = E r e 
N ~ ~ ' 

where E is a traceless tensor. The resul t ing average stress in the 

suspension may be evaluated by l inear response theory [2] and leads 

to the frequency-dependent shear v iscosi ty n(m). To second order in 

the density one may write 

n(~) = n~ + ~V(~)~n + 0(~ 3) , (5 

where @ = (4w/3)na 3 is the volume fraction at density n = N/~. Here 

n~ is the high-frequency limit which itself has the density expansion 

The coef f ic ient  ~ for hard spheres with st ick boundary conditions was 

evaluated by Einstein [3],  and the Huggins coef f ic ient  k H for such a 

system [4,5] is given by kH = 0.800. The high-frequency value n~ may 

be evaluated from the equilibrium d is t r ibu t ion Peq(~). In order to 

find the frequency-dependent viscosity n(m) one must study the non- 
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equilibrium change of d is t r ibu t ion .  The frequency-dependence describes 

the v iscoe las t i c i t y  of the system. 

Here we are interested in the coef f ic ient  ~V(m) in (5). In order to 

calculate this coeff ic ient  i t  suffices to consider the Smoluchowski 

equation for a pair of par t ic les.  The zero-frequency value ~v(O) was 

f i r s t  evaluated by Batchelor [6] ,  who found ~v(O) = 0.97. A more pre- 

cise calculation [7] yields ~v(O) = 0.913. By def in i t ion  the coef f i -  

cient ~V(~) tends to zero at high frequency. Recently we have found 

the complete frequency dependence for hard spheres with neglect of 

hydrodynamic interactions [8].  

In l inear response theory the change of the pair d is t r ibu t ion  function 

from i ts  equil ibrium form is given by 
^ ^  

~P(R,w) = -3~Bqa3n 2 E :RR g(R)f(x,~) (7) 

where R is the re la t ive  distance vector of a pair of par t ic les ,  g(R) 

is the equilibrium radial d is t r ibu t ion function, x = R/2a is the di-  

mensionless distance and f(x,m) is a frequency-dependent radial func- 

t ion.  To lowest order in the density the radial d is t r ibu t ion  function 

is given by g(R) = e(2a-R), where e(r) is the step-function. With neg- 

lect of hydrodynamic interactions the radial function f (x ,~)  sat is f ies 

the equation 

d df ~ )  - 6 f  - f : 0 , ( 8 )  ( x2 ~2x2 

where ~ is given by 

= (1-i)Wa--~z-/I~o for ~ > 0 (9) 

Of course, the function f(x,w) tends to zero at large x. I t  may be 

shown [9] that at touching i t  must sat is fy  the boundary condition 

f ' (1,m) = -4. The solution of (8) with the above boundary conditions 

is simple and given by 

4 (10) f (x ,~)  : ~ k2(~x) , 

where k2(z) is a modified spherical Bessel function. In par t icu lar  in 

the steady state 

f(x,O) = 41(3x ~) (11) 

I t  may be shown [9] that the coef f ic ient  ~V(m) in (5) is given by the 

value at touching according to 
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~vCm) = ~ f ( 1 , m )  (12)  

From (10) one f i n d s  the e x p l i c i t  r e s u l t  

36 ~2+4~+3 (13) 
~V (~) = T ~3+4~2+9~+ 9 

The s teady  s t a t e  va lue  ~V(0) = 12/5 was found e a r l i e r  by Russel [ 1 0 ] .  

I t  d i f f e r s  s i g n i f i c a n t l y  from the va lue  ~V(0)  = 0.913 ment ioned above.  

Th is  suggests  t h a t  hydrodynamic  i n t e r a c t i o n s  make an i m p o r t a n t  d i f f e -  

rence .  In F i g .  I we p l o t  the d i m e n s i o n l e s s  f u n c t i o n s  

~'(~)-~ ~,,(~) 
R(m) = n ( 0 ) - q =  ' l (m)  = ~ ] - 0 - ~  ' (14) 

as g iven by (5)  and ( 13 ) .  

log ~, 

A 

F igu re  I :  R(~) (drawn c u r v e ) ,  I ( ~ )  (dashed c u r v e ) ,  w = m~ . 
O 

The f r e q u e n c y  sca le  i s  l o g a r i t h m i c ,  so t h a t  i n  f a c t  the f u n c t i o n s  va ry  

over  a wide range o f  f r e q u e n c y .  

The h igh f r e q u e n c y  b e h a v i o r  o f  the r ea l  and i m a g i n a r y  pa r t s  o f  the  v i s  

c o s i t y  i s  g iven  by 

18 ~2 
n ' ( ~ )  ~ n ~  + T ~4~-~-- ~ , 
n " ( ~ )  ~ 18 ~2 o 

T ~ o  n , as m ÷ = (15) 
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Th is  i s  r e m i n i s c e n t  o f  s i m i l a r  power law b e h a v i o r  o f  the dynamic v i s -  

c o s i t y  o f  d i l u t e  po lymer  s o l u t i o n s  [ 1 1 , 1 2 ] .  We can w r i t e  

pCu) du , (16) q(m) = q~ + GV ~o / 
0 

where z = i ~  o and the r e l a x a t i o n  s t r e n g t h  G v i s  f i x e d  by the s p e c i f i -  

c a t i o n  o f  the c o e f f i c i e n t  in  the a s y m p t o t i c  b e h a v i o r  o f  the s p e c t r a l  

d e n s i t y  p [ u ) .  In the t h e o r y  o f  po lymer  s o l u t i o n s  one encoun te rs  the 

a s y m p t o t i c  b e h a v i o r  

1 1+1/p p (u )  ~ ~ u- as u ÷ ~ , (17) 

w i t h  a c h a r a c t e r i s t i c  exponent  p, The c o r r e s p o n d i n g  h igh  f r e q u e n c y  be- 

h a v i o r  o f  the dynamic v i s c o s i t y  i s  g iven  by 

, ~ G v ~O(~To  ) - 1 + 1 / p  q (~) ~ n~ + 2pcos.(~/2p)  

,, ~ G v ~o(WTo ) - 1 + i / p  q (m) ~ 2 p s i n ( ~ / 2 p )  as ~ + (18) 

In the p r e s e n t  case the exponent  i s  p=2, l i k e  in  the Rouse model ,  

and the r e l a x a t i o n  s t r e n g t h  i s  g iven  by 

36J7 ~2 ~ (19) 
G v = ~ T O 

One can a lso  f i n d  the e x p l i c i t  form o f  the s p e c t r a l  d e n s i t y  in  ( 1 6 ) .  

From (13) one f i n d s  

4u5/2 
p (u )  = 8,u~_8u2+18u+81 (20) 

In F i g .  2 we show a d o u b l y - l o g a r i t h m i c  p l o t  o f  the s p e c t r a l  d e n s i t y .  

F i gu re  2: 

,i,a 

I .f,~ 

log p -z 

.2,$ 

.3.0 

-3,5 

-a 2s olo ~, ,'.o ,I, ,'o ", ~o ~Is 
log u 



(22) 

The dynamic viscosity may be expressed as a one-sided Fourier trans- 

form 

n(~)  = n~ + n f e iWt ~ ( t ) d t  , (21) 
o 

where ~(t)  is the dimensionless stress relaxation function. I t  is re- 

lated to the spectral density in (16) by 

GVT o ~ )e_Ut/T ° ~(t)  - ~ p(u du 
o 

From (20) one finds the long-time behavior 

~o 7/2 2 @2 ( T )  as t ÷ ~ ( t )  ~ ~ 

and the short-time behavior 

~ ,~  ( T ) 1 / 2  as  t ÷ 0 

(23) 

(24) 

(25) 

One may also find an exp l i c i t  expression val id for al l  times [8].  We 

plot the relaxation function in Fig. 3. Here s = t / t  ° and ~(s) is de- 

fined by 

1 8 V~2- @2 ( t / T 0 )  ~ ( t )  : ~ 

Figure 3: 

5 

re(s) i I 
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The coef f ic ient  aV(W) in (5) may also be evaluated e x p l i c i t l y  for a 

s l i gh t l y  d i f fe rent  model, in which again the spheres dif fuse with d i f -  

fusion coef f ic ient  D O in the absence of hydrodynamic interact ions,  but 

cannot approach each other closer than 2b, where the radius b is largel 
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than a. The f u n c t i o n  my(m) is r e l a t e d  to the express ion (13) by a 

simple s c a l i n g .  This model may be a good approx imat ion fo r  suspensions 

of  charged po l ys t y rene  spheres.  For such systems the hydrodynamic i n -  

t e r a c t i o n s  are r e l a t i v e l y  un impor tan t .  

Behavior of  the dynamic v i s c o s i t y  as shown in F ig .  I has been found 

e x p e r i m e n t a l l y  by van der Werff  et  a l .  [13] in suspensions o f  s i l i c a  

spheres.  In such suspensions hydrodynamic i n t e r a c t i o n s  cannot be neg- 

l e c t e d .  The exper iments were ca r r i ed  out at volume f r a c t i o n s  @ between 

0.3 and 0 .5 ,  so tha t  the low dens i t y  theory  presented above must be 

extended.  The exper iments show the asymptot ic  behavior  

q,(m) ~ q~ + ~ GI %11/2 - I / 2  
2~- 

n"(m) ~ ~ GI ~ I /2  ~ - I / 2  , (26) 
2 ~  

s i m i l a r  to (15) .  The r e l a x a t i o n  s t reng th  G I and the t ime scale Zl 

must be f i t t e d  to the exper imenta l  data.  The agreement w i th  Fig.  I 

suggests tha t  the d i f f u s i o n  mechanism discussed above is respons ib le  

fo r  the m- I / 2 -behav io r  seen e x p e r i m e n t a l l y .  The i n f l u e n c e  of  hydrody- 

namic i n t e r a c t i o n s  and h igher  o rder  dens i t y  c o r r e c t i o n s  remain to be 

i n v e s t i g a t e d  t h e o r e t i c a l l y .  
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INTRODUCTION 

The purpose of the present work is to examine to which extent non-equilibrium 

thermodynamics is useful for establishing rheological equations. Several works have been 

devoted to the description of rheological bodies within the framework of thermodynamics. 

The originality of the present paper lies in the fact that the analysis rests on a recent version 

of non-equilibrium thermodynamics, referred to as Extended Irreversible Thermodynamics 

(EIT) [1,2]. This new theory has fuelled much interest during the last decade and has been 

applied with success to heat conductivity [3], deformable solids [4] and viscous fluids [5,6]. 

Since the contents and scope of EIT may not be familiar to the audience, we have prefaced 

the description of rheological materials by a brief summary of EIT in section 1. In sections 

2 and 3, E1T is applied to derive the constitutive equations of rheological materials. In section 

2 it is shown that linear viscoelasticity is easily interpreted within the framework of EIT and 

that the classical models of Maxwell, Kelvin-Voigt, Poynting-Thomson and Jeffreys are 

recovered as particular cases of the formalism. In section 3, a non-linear analysis is proposed 

to describe second order non-Newtonian fluids like these of Reiner-Rivlin, Rivlin-Ericksen 

or Giesekus. As particular results, it is shown that EIT leads to the correct signs of the normal 

stress coefficients in the Rivlin-Ericksen model. 
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1. EXTENDED IRREVERSIBLE THERMODYNAMICS 

To make clear and explicit the structure and the main hypotheses underlying Extended 

Irreversible Thermodynamics (EIT), we consider a very simple system consisting of an 

incompressible viscous fluid at uniform temperature. The differences with Classical 

Irreversible Thermodynamics (CIT) [7,8] will be emphasized. 

The basic problem in fluid mechanics is to determine the behaviour of the velocity field 

v~(xi, t) as a function of position xi and time t. The evolution of v~ in the course of time is 

governed by the momentum balance 

V pdtv ~ = -p~,~ + P~,~ + p f/ , (1.1) 

supplemented by the incompressiblility condition Yi,i : 0. In (1.1) dt stands for the material 

time derivative and a comma for the derivation with respect to the spatial coordinates, f 

designates the body force per unit mass, p the density, p the hydrostatic pressure, Pi~ the 

viscous pressure tensor related to the total pressure tensor by 

V • 

Pii = P~i~ + Pij , (1.2) 

like Pzj the quantity P~ is assumed to be symmetric; moreover as bulk viscosity effects are 

ignored, it is also traceless. Summation convention on repeated indices is used throughout 

this work. 

In CIT [7,8], the viscous pressure Pi~ is given by the constitutive relation 

ei j  = -2 .qv i j  , j = ~ (vi j  + vj,i (1.3) 

Equation (1.3) is Newton's law and r I is the shear viscosity, assumed to be independent of 

the velocity gradient. Substitution of Newton's law in the momentum balance (1.1) results 

in the Navier-Stokes equation; it is a parabolic partial differential equation from which follows 
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that velocity disturbances will be felt instantaneously everywhere within the system, at 

variance with the causality principle requiring that the effect will be felt after application of 

the cause. 

Classical irreversible thermodynamics is based on the so-called local equilibrium hypothesis 

stating that the specific entropy s depends on the same variables as in equilibrium. Although 

the local equilibrium hypothesis is satisfactory for solving a wide variety of problems in 

continuum mechanics, it is not appropriate for describing materials with memory (like 

polymers) and high frequencies or short waves processes (like ultrasound propagation, light 

and neutron scattering by fluids). EIT was developed to provide a thermodynamic framework 

for the description of systems and phenomena not covered by CIT. 

1.1. The basic statements of EIT 

Extended irreversible thermodynamics was born out of the necessity to go beyond the local 

equilibrium hypothesis and to remove the unpleasant physical property of propagation of 

disturbances with an infinite velocity. These requirements are achieved by making the three 

following statements. 

1 - It is assumed that there exists a generalized entropy function s with the following 

properties : 

i. it is additive, 

ii. it is a convex function of the whole set of variables, 

iii. its rate of production is positive definite. 

The importance of these properties cannot be assessed a priori but will become clear from 

their consequences, to be analyzed subsequently. In view of proposal (iii) the evolution of 

s in the course of time takes the form 

p d :  = -J~,i + °~ (1.4) 

with 



260 

c¢ _> 0 (1.5) 

2 - The space of the basic variables used in CIT is enlarged to include non-conserved fast 

variables. The latter take usually the form of thermodynamic fluxes as the heat flux, the 

diffusion flux of matter, and the viscous pressure tensor. In contrast with the classical 

variables, like mass, energy, momentum which are slow and conserved quantities, the new 

variables are usually quickly decreasing in time and are not obeying conservation laws, 

moreover they have to be zero at equilibrium. The space V of the state variables can be 

considered as the union of the space C of the classical variables and the space F of the fast 

thermodynamic fluxes : 

V = C U F  (1.6) 

3 - The extra variables F are assumed to satisfy evolution equations of the general form 

d,F = -J~i  + SF (1.7) 

where Jff is the flux related to the variable F and S e the corresponding source term. Both Jff 

and S v must be determined by means of constitutive equations. Restrictions on the possible 

forms of the constitutive relations will be placed by the second law and the objectivity 

criterion, requiring invariance with respect to reference systems in motion [9]. 

1.2. The evolution equation of the pressure tensor 

In the aforementioned example of a one-component ordinary viscous fluid, the set of classical 

variables is complemented by the viscous pressure tensor P~ supposed to satisfy an evolution 

equation of the form 

V V V 

d, Pcq) = -Jci~,,k + Scq) , (1.8) 
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round brackets mean traceless symmetrization. The general form ofJ~j~ (a third rank tensor) 

and S(~ii) (a second rank symmetric tensor) are derived from the usual representation theorems 

of tensors. By restricting the analysis to the linear approximation, J(~j~ and S(~j) are simply 

given by 

J~q)k=A ~(Vi~) j , S(;j)=-BPi~ (1.9) 

where A and B are constant scalars. After substitution of (1.9) in (1.8), one obtains 

Y T.dtPi V = -2"qVq - Pq (1.10) 

wherein z and rl have been defined as 

1 A 
"¢=--B ' 211=B (1.11) 

It is easily checked that 11 has the dimension of a viscosity and z the dimension of a time : it 

is the relaxation time of the "flux" P,.~. By setting in (1.10) z = 0, one recovers Newton's law. 

It is worth stressing that the steady constitutive Newton equation of CIT is replaced in E1T 

by unsteady evolution equations of the Maxwell type. 

1.3. Restriction imoosed bv the second law 

Informations about the signs of the coefficients z and q are provided by the second law of 

thermodynamics requiring that the entropy production c¢ is positive definite. The quantity 

o ~ is calculated from the balance law (1.4) wherein the entropy flux J7 and s will be given 

by constitutive equations. Up to second order terms, it can be shown [2] that o-' is given by 
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c¢ = 2-~P~P~j > 0 , (1.12) 

wherein T is the positive absolute temperature. The positiveness of o'S is guaranteed at the 

condition that 

11>0 

Another interesting consequence from the calculation of o'S is that it leads to the explicit 

expression of the Gibbs equation [6]. The latter plays a dominant role in CIT wherein it is 

postulated from the outset. In EIT, Gibbs equation is derived and found to be given by [2,6] 

1 '~ v v 
as = ~ du - 2 - ~ e ' f l e q  ' (1.13) 

u is the specific internal energy. The first term in the r.h.s, of (1.13) is classical while the 

second term is typical of EIT. 

1.4. Restriction placed by the convexity of entropy 

Expanding entropy around equilibrium yields 

'~ v v (1.14) s = Seq - 4 p r l T P q P q  

Convexity of s around equilibrium implies that its second derivatives with respect to Pi~ is 

negative. Since it has been shown earlier that 11 > 0, it follows from (1.14) that 

~>0. 
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This result is important as it ensures that the evolution equations are hyperbolic, allowing 

the disturbances to propagate with finite velocity even at infinite frequencies. 

The behaviour of the fluid is completely described by means of the momentum balance (1.1) 

and the evolution equation (1.10). The latter together with the constraints r ! > 0 and • > 0 

are the essential features of the EIT model. Boundary and initial conditions will be provided 

by experimental observations. 

2. LINEAR VISCOELASTICITY 

In this section, the classical theory of linear viscoelasticity is revisited. It is seen that EIT 

provides a simple and systematic way to derive the main results of linear viscoelasticity. 

2.1. Constitutive and evolution equations 

We take for granted the following hypotheses : 

i. the deformations are infinitesimally small, 

ii. the body is at uniform temperature and heat effects are neglected, 

iii. the material is isotropic. 

The choice of the variables is inspired by the results of section 1 derived for viscous fluids. 

Let us recall that in the latter case, the basic parameters are the velocity vi, the internal energy 

u and the viscous pressure Pi~- By analogy with the decomposition (1.2) we shall decompose 

the pressure tensor, assumed symmetric, into an elastic part P'ij and an inelastic part P"ij : 

Pii = P'ij + P''ij , (2.1) 

P'ij obeys Hooke's law 
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P'i i  = -2Ge-'ii (2.2) 

with G the Lam6 coefficients and e~j the symmetric strain tensor, defined in terms of the 

deformation vector ui as 

e i j=  1/2(ui,.i + uy.i) , (2.3) 

recall that bulk effects are ignored (ekk = 0). 

In parallel to the treatment of a viscous fluid [ 1,2,5,6], we choose as basic variables the rate 

of deformation ~)tui, the internal energy u and the inelastic pressure P"ii. The behaviour of  

the classical variable ui and u is governed by the usual balance laws of momentum and 

energy : 

Pc3~ui = - P i ~ j  + Pfi , (2.4) 

p~9 ,u = - P  i y~O , ei j , (2.5) 

Where in 2, is the partial time derivative. By strict analogy with the classical balance laws 

(2.4) and (2.5), it is assumed that the supplementary variable P"ij satisfies a balance equation 

of the general form 

~t P' ' i i  = -J(i.i),,, + S(iy) (2.6) 

In order that the description be complete, it remains to express the flux J,~k and source Sii as 

functions of the basic set of variables by means of constitutive equations : 

Ji.ik = Jiik( u, c3 tui, P "i j) , (2.7) 

Sii = Sij(u,  b, ui, P"i j)  , (2.8) 
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the most general relations compatible with a linear analysis are 

1] 1 2 
J(ij)k ---'-~I ~(OtUi~)jk + ~tUj~ik) ---~ btUkSu] , (2.9) 

=-lp".. (2.10) S(iy) ~:~ u ' 

where ~ and 1] are undetermined coefficients. Substitution of (2.9) and (2.10) in (2.6) results 

in the following field equation for the extra variable 

"ctOtP"q = -P "ij - 2"l]OtF"ij (2.11) 

Equation (2.11) is the required linear evolution equation of the new variables P"ij. It is 

possible to obtain evolution equations for the total pressure components by elimination of 

P"u between (2.11) and (2.1). This operations leads to the following results 

"CeOteij + Pq = -2G  (e.ii + ~O, eij) (2.12) 

wherein x a stands for 

• a = ~ + ~  (2.13) 

It is worth noticing that relation (2.12) is the constitutive equation for a Poynting-Thomson 

body and that this relation arises naturally from extended irreversible thermodynamics. 

The following particular cases are also of interest. By setting x~ = 0 in (2.12), one obtains 

Pij  = - 2G  eij - 21"lOteij (2.14) 



266 

Equation (2.14) is representative of a Kelvin-Voigt body. If one assumes that in equation 

(2.12) G = 0 which means that the total stress has only an inelastic contribution, one recovers 

the basic equation of Maxwell's model, namely, 

T'¢3t Pij + Pij = -21~tEij (2.15) 

An interesting generalization is provided by the following model which is a coupling of 

Newton's viscous fluid and the material described by equation (2.12). Let us write for the 

stress tensor a relation of the form 

_ s p Pij-P~j+Pij  , (2.16) 

P~ is the viscous pressure tensor whose traceless part is given by 

$ s Pi j=-2r lb ,  eij , ( N e w t o n ' s  law)  (2.17) 

with 11 s the shear viscosity, while Pf~ is supposed to be formed of an elastic and an inelastic 

part : 

P~ = -2G ~ij + P"ij (2.18) 

Repeating the reasoning leading to (2.11), with P"zJ selected as basic variables, we are led 

to the relaxational equation 

"c~tP "ij = -P  "ij - 2"qP ~teij (2.19) 

By taking the time derivative of equation (2.16) and eliminating P"ij by means of (2.19), one 

obtains 
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"dk, Pij + Pi.i =-2Geij-  2G IX j + 2vrl'a e,, (2.20) 

Setting G = 0 in (2.20) yields 

"cb,Pij +eij = -2(11 p + Tl')b,e~j + 2Vrl*O,2eq (2.21) 

which is nothing but Jeffreys' model while by letting'q' = 0, one recovers the previous model 

(2.12). 

The material coefficients appearing in the aforementioned evolution equations for the pressure 

tensor components are subjected to some constraints imposed by the second law of 

thermodynamics, the criterion of objectivity, and the condition that entropy is a convex 

function at equilibrium. These restrictions are examined in the next subsection. 

2.2. Restrictions imoosed bv the second law of thermodvnamics, obiectivitv, and the 

CQnvCxity requirement 

We postulate the existence of a regular and continuous function, the specific entropy, given 

by the constitutive relation 

I t  s =s(u,eij,P ij) , (2.22) 

and obeying a balance equation of the form (1.4). In classical theories, s depends only on u 

and eij, here it depends in addition on P"ij. Objectivity prevents the entropy to depend on 

the velocity because the latter is a non-objective quantity. In the absence of heat flux, the 

entropy flux JZ is zero so that (1.4) reduces to 

= pO, s (2.23) 
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Using the chain differentiation rule to calculate 6~s, one obtains 

( b s .  bs ~ Os _ ,,'~ 
(Y~ = pl--'--OtU +-q---dtEi. + ~-ff-h-q~,, OtP i.[ > 0  

~,Ou Oeij ' dP ij ' ) -  
(2.24) 

Define as usual the absolute temperature T and the components of the elastic pressure P'.. U 

tensor by 

Os 1 0s 1 
pT P'ii ~u T ' ~t~iy (2.25) 

Making use of the energy balance (2.5) and the evolution equation (2.11 ) for P"~j, the entropy 

inequality (2.24) reads as 

~ ~ e  
h ~  

(ys : ,,ijOtei j _ P (p  "ij + 2YlOtEij) ~ >- 0 
T z~ OP ij 

(2.26) 

For isotropic systems, the most general form for the derivatives of s with respect to P"iy is 

given, in the linear approximation, by 

~S 
OP".. - - d P  "ij -- Aei j  , (2.27) 

tJ 

By taking the mixed derivative of (2.27) with respect to ~ij, respectively and comparing with 

the mixed derivative of (2.25b) with respect to P"ij, it is found that the coefficient A is zero. 

Substitution of equation (2.27) in (2.26) results then in 

a e , ,  e . . . .  - ( 1 - 2 a n / > 0  (2.28) 

Positiveness of expression (2.28) demands that 
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d % 
~ > 0  , 2 ~ = H > 0  (2.29) 

We turn now our attention to the consequences stemming from the convexity requirement 

of entropy. Expanding s around equilibrium, for fixed values of energy and strain, one obtains 

I t  I t  S =S,q-~dP ijP i~+O(3) (2.30) 

and, since s is maximum at equilibrium, 

d > 0  

By combining this result with inequality (2.29a), it is found that 

Z~> 0 

The requirement that the entropy production is positive definite has led to the important result 

that the viscosity coefficient rl is positive while from the convexity property of entropy it is 

concluded that the relaxation time x~ is positive. 

It may also be asked what are the consequences of introducing a whole spectrum of 

relaxational modes for the pressure tensor instead of working with one single mode. Such a 

behaviour is typical of the Rouse and Zimm [12] models. These molecular models are very 

useful for describing dilute polymer solutions. It was recently shown that the Rouse-Zimm 

models can easily be incorporated into E1T description. For details, the reader is referred to 

reference [ 13]. 
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3. NON-NEWTONIAN FLUIDS 

It is shown that EIT leads to a simple and coherent modelling of non-linear systems, like 

non-Newtonian fluids. The basic hypothesis is still to raise the viscous pressure tensor to 

the status of independent variable. Applying the technique developed previously, constitutive 

equations for a wide class of second-order non-Newtonian fluids are established. 

3.1. Extended thermodynamics of second-order non-Newtonian fluids 

The basic variables are selected to be the same as in section 2, namely 

(3 1) V i , U , P i j  , 

where P~ satisfies a balance relation of the form 

d, Pi~ = --J(i~)k.k + S(q) (3.2) 

The quantities Jijk and Sq will be expressed by means of constitutive relation : 

v v 

Jijk : Jiy~(vi, u , P q )  , Si. i : Sij(vi, u ,Piy)  (3.3) 

To comply with the criterion of objectivity, the material time derivative will be replaced by 

an objective time derivative D, for instance, Jaumann's derivative. The source term in (3.2) 

must be a traceless symmetric objective quantity that can be cast in the general form 

v 1 v v 
S(,j) = - A  Pi~ - B (P,;P,)  - rcvSq) , rc = -~ P,*Pk* (3.4) 
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The most general form for the flux Jijk, symmetric with respect to the indices i and j ,  is given 

by 

l 1 8 v 
J(ij)k = CE 2 (1) iSjk d- VjSik ) -- ~ "V k ij ~ "]- E ('lIiP jk "1- vjPik ) (3.5) 

A, B, C, E are arbitrary coefficients which may depend on the invariants of P~]. Substitution 

of (3.4) and (3.5) in (3.2) yields the following evolution equation for P~k : 

v v v v v 

D P i j  : ---C Vi i  - A P i j  - B ( P i k P k j  -- g ~i j)  (3.6) 

In order to fulfil the objectivity requirement, the coefficient C has to be taken constant while 

E must be zero : otherwise Juk,k and consequently the r.h.s, of (3.6) would contain undesirable 

non-objective terms in vi. For further purpose, it is interesting to put 1/A = "~, C / A  = 2rl ,  

B / A  = a so that (3.6) takes the more familiar form 

v v v v v 

T ' D P i j  = - 2 1 ] V i j  - P i j  - a ( P i k e k j  -- ~, 8ij  ) (3.7) 

wherein x has the dimension of a time and q the dimension of a viscosity. The relation (3.7) 

is the keystone of the model. After exploring the restrictions placed by the second law and 

the convexity property of s it is concluded that ~ > 0 and 11 > 0 indicating that Pi~ satisfies an 

evolution equation with a positive relaxation time and a positive viscosity. The model (3.7) 

has been shown to account in a fairly good way for the steady and oscillatory sheafing flows 

if it is admitted that x, ~q and a are power-laws of the invariants of Pi~ [14]. Comparison 

between experimental data and the present model is reported on figures 1 and 2 for a 2.5% 

solution of polyacrylamide in a 50% water and 50% glycerine solution (PAA). Figure 1 

shows the shear rate dependence of the classical viscometric functions, the first and second 

normal stress coefficients WI, q~2 and the apparent viscosity 11. In figure 2, the material 

functions r I' (dynamic viscosity) and G '  (storage modulus) are represented as a function of 

the oscillations frequency 0~. The solid lines represent the theoretical predictions; results 

corresponding to other materials can be found in [14]. 
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Figure 1 : Dependence of  the viscometric fuctions on the shear rate for PAA. 
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Figure 2 : Dynamic viscosity and storage modulus versus frequency for PAA. 
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3.2. Comparison with the Reiner-Rivlin and Rivlin-Ericksen models 

At this point of the analysis, it is interesting to investigate the transition from a rate-type 

equation like (3.7) to constitutive relations like the Reiner-Rivlin or the Rivlin-Ericksen 

equations which are expressed by [15] : 

Pij  = P S i j -  2 r l V i j - 4 ° q V i k V k j  , ( R e i n e r  - R i v l i n )  (3.8) 

Ply -- P S i j  - 2"qViy - 20raVin(2) _ 4Ot, lVikYk j 1, ( R i v l i n  - E r i c k s e n )  (3.9) 

rl, ctl and oq are material coefficients depending in general on the principal invariants of Vii 

while V~] ) is the Rivlin-Ericksen time-derivative of order two defined by 

V: 2) = dtVij + Vk,iVkj + Vikvk, j (3.10) 

TO recover (3.8) and (3.9) we rewrite equation (3.7) in term of Rivlin-Ericksen's time 

derivative p}2) ; one obtains 

V V v P~ = -2rlV~j - "cP~ 2) - a (P~kPkj -- ~ 8ij) 

For F = 0,1 and 2,  one recovers respectively the lower convected D~, the Jaumann D and 

the upper convected time derivative Dr. 

At the first order approximation and in the limit x = 0, (3.11 ) reduces to Newton's law. 

The second order approximation with x = 0 is obtained by substituting in the right hand side 

of (3.11)Pi~ by Newton's law, this operation leads to the Reiner-Rivlin relation 
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(3.12) 

If the relaxation time x is not zero, one obtains from (3.11) 

P~ = -2rlVq + 2vrlV~)- 4rl(rla + F x)Vik ekj (3.13) 

Comparison between (3.13) and the Rivlin-Ericksen equation (3.9) allows to express the 

coefficients ¢xl and ¢h in terms of the parameters rl, ~ and a, namely 

~=Fr lx+ r l2a  , ¢h=-Tl'~<0 

Recalling that x and rl are positive, it is clear that oa is a negative quantity in accordance with 

experiments. Moreover, addition of ¢xt and ¢h yields 

c~ 1 + ~  = I.t1:(F - 1) +rl2a , 

showing that the sum of the coefficients cq and ~z is generally non-zero. In particular, when 

Jaumann's derivative is used, the sum ~1 and ~ is simply equal to rl2a. Let us recall that 

Dunn and Fosdick [ 16], working in the framework of rational thermodynamics, have found 

> 0 and ¢¢1 + ¢h---0. It can thus be concluded that by considering the Rivlin-Ericksen 

equation as an approximation of the more general rate-type model (3.7), one avoids the 

contradictions raised by Dunn and Fosdick's work. The essential conclusion is that ¢h < 0 

is not in contradiction with thermodynamics. 

3.3. More general models. 

The model (3.7) contains only three parameters x, r I and a. A more complicated model 

involving more parameters may be easily generated if it is admitted as in section 2 that the 

total viscous pressure tensor Pi~ is the sum of contributions P~ from the solvent and P~ from 
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the polymer chain. It is assumed that the solvent is an incompressible Newtonian fluid and 

that the space of the independent variables is formed by vi, u and PP. Repeating the procedure 

of section 3.1 results in the next evolution equation for PP 

(~f 1 p p'~ " d ' D P P = - 2 ~ P V i j - P ~ - a P ( P i P P k P j - ~ P ~ ) q )  , =~PijPi~J (3.14) 

which contains three parameters x p, 11 p and a p, D is an objective time derivative. After 

elimination of Pp between (3.14) and (2.16), one obtains the following rheological equation 

for the total pressure tensor : 

C D P , j  + P i j -  (P~kP~j--~)i j )--a~(VikP~,j  + P~kVkj--~)i i)  

= -2rlIVij +- 2a ~,2 / (3.15) 

= 

where the non-identified coefficients r I, a, ~, ~ and x stand for 

rl = rl ~ + rl p , a - - T l a P  , ~, = TIsTf  
"c p q 

2 v = 1 
=-~PijViy , x =-~ VqVij 

Expression (3.15) is the Giesekus constitutive equation [17] except for the terms in rc v, x and 

x which appear as a consequence of the no-bulk viscous pressure assumption. Equation 

(3.15) contains four independent parameters that can be indifferently chosen as x p, aP, 11 ' and 

11 p or xP, a, lq and ~,. The above result is particularly promising as it allows to derive the 

Giesekus model from very simple macroscopic considerations. 
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It is worth repeating that the above results were obtained from very simple considerations : 

it was only required that P~ be selected as independent variable and that it obeys a second-order 

non-linear evolution equation of the relaxation type. Of course, it is still possible to improve 

the quality of the model by introducing supplementary variables, for instance, the 

conformation tensor. This results in a more realistic description of the geometrical 

configuration of the polymer chains and generates general nonlinear constitutive equations 

encompassing the most usual rheological models [18]. Other problems remain open like the 

role played by the temperature and the polymer concentrations. These effects will be 

examined in future works. 
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1 Introduction 

Extended Irreversible Thermodynamics (EIT) [1-4] has been developed to enlarge 

the domain of applicability of classical irreversible thermodynamics [5-7] which is 

limited to steady linear constitutive equations. 

Futhermore it is known from continuum mechanics that the principle of objectivity 

[8,9] is a usefull tool to impose restrictions on the possible forms of the constitutive 

equations. In short one can say that this principle imposes the constitutive equations to be 

form invariant for a change of observer. 

The purpose of this paper is to show how the principle of objectivity can be 

introduced in a natural way in E1T. 

As a preliminary, the Gibbs description of E1T is briefly recalled. This description 

highlights the role of the history of the viscous pressure tensor in the constitutive 

equations. Since history of a tensor is not a univocal notion, it is studied in some details 

in sections 3 and 4. Using an intrinsic definition of the history of tensors, it is then 

shown that the principle of objectivity appears naturally within EIT. 

2 Gibbs descriotion of Extended Irreversible Thermodynamics [3] 

The fundamental hypothesis in Extended Irreversible Thermodynamics is to 

consider the thermodynamic fluxes as independent variables. The space of state variables 
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of ordinary thermodynamics is enlarged by means o f the rmodynamic  fluxes which 

vanish at equilibrium. For simplicity, temperature effects are not considered here : the 

heat flux and heat supply are supposed to be zero. 

In EIT it is assumed that specific entropy s is an analytic function not only of 

classical variables u (specific internal energy) and v (specific volume) but also of the 

viscous pressure tensor. This tensor is usually split up into its trace pV and its deviatoric 

part pV. If  developments are limited to second order terms in the flux variables, one 

has : 

v pV v s = s ( u , v ) +  v - - ~ a p V U : p V U + ~ - ~ ] 3  : P  , (1) 
6 T  

where a and 13 are phenomenological functions of u and v ; T is the temperature, U the 

unit tensor and the colon denotes double contraction. 

After taking the material time derivative of this equation and using the mass and 

energy conservation laws, one can calculate the entropy production per unit volume o,. 

Since the heat flux vanishes, the entropy flux is zero and one obtains : 

T o s v v .v - - - p  ( V.V -I- (X l~v) - Pij ( Vii + p Pij ). (2) 

In this expression, v is the velocity field and ~/ij the symmetric traceless part of the 

velocity gradient tensor. A upper dot stands for the material time derivative. 

This expression can also be written as a bilinear form in the thermodynamic fluxes 
V 

pV and Pij and in the conjugate expressions x and Xij called thermodynamic forces : 

$ v V 

T t~ = - p x - Pij X i j ,  (3) 

where x and Xij are defined by comparison of (2) and (3). 

Then, by analogy with Classical Thermodynamics [5-7], the constitutive equations 

are obtained by expressing the thermodynamic forces as functions of the basic variables. 

If  developments are supposed to be linear, one can write : 

v v 

Xij = B Pij and x = A p .  (4) 
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The constitutive equations obtained by comparing (2), (3) and (4) are the well- 

known Maxwell equations for a viscoelastic material [10] : 

. V  V A 

~,2 Pij + Pij = - 2 a]2 Vii, (5.a) 

. V  V 

~.0P + P  = - 2r10 V.v , (5.b) 

where 

(x 1 ,~ ,2=_ ~2= 2 B  ~ , 0  = - A '  0 0  = - ~ , - - -  ( 5 . c )  

From the second law of thermodynamics one can infer the positiveness of the 

viscosities r12 and rl0 [4]. Moreover, if  the entropy defined in (1) is assumed to be a 

convex function of the viscous pressure tensor -this property reflects the stability of 

equilibrium-, the relaxation times ~.2 and ~,0 are also positive [4]. As a consequence, the 

momentum disturbances propagate at finite speed (hyperbolic partial differential 

equations). 

In the constitutive equations (5), it is important to point out the appearance of the 

time derivative of the viscous pressure tensor. Actually this time derivative accounts for 

a part of the "history" of the viscous pressure tensor, that is for a part of its evolution in 

the course of time. 

Unfortunately, the history of a vector or a tensor is not a clear notion. The history 

of a tensor is often identified with the history of its components in some reference basis. 

The major difficulty arises then from the fact that the basis chosen by an observer can be 

time dependent for another one, due to the fact that different observers can be in 

movement with respect to one another. For this reason, it is sometimes uneasy to 

distinguish the variations of the components of a tensor due to the movement of the basis 

from the intrinsic variations of this tensor. 

For instance, the material time derivative of a tensor is not an intrinsic quantity : 

for a change of observer, the transformation law for the material time derivative of a 

tensor is not the usual "tensorial law". One usually says that such a quantity is not 

objective or that it is frame dependent [8,9]. The material time derivative is thus 

ambiguous as it does not represent the same thing for different observers. 
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For this reason equations (5) can not be considered as real constitutive equations 

describing intrinsic properties of materials. 

In the remainder of this paper it is shown how to build up rheological models in the 

framework of  Extended Irreversible Thermodynamics which are intrinsic and which do 

not present such ambiguity. 

3 Definition of an intrinsic history for tensors 

3 . 1  Def ini t ion of  an observer  

Before  defining an intrinsic his tory for tensors it is necessary  to give a 

mathematical definition of  an observer. 

We define an observer O as a class of (spatial) coordinate systems whose elements 

are "fixed" with respect to each other. If x i and x i' represent respectively the coordinates 

of a point in a system S and in a system S' which define the same observer, one has 

X i= xi(x k') and x i'= xi'(xk), (6.a) 

with no dependence on the time t. The coordinates are completely general (curvilinear 

and non-orthogonal coordinates) [ 11,12]. 

3 
X 

ei~ "e2 x 2 

P o ( x 0 i ) ~ ~  

Fig. 1 Coordinate system S and natural basis 

at point Po whose coordinates are x o i 
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The metric tensor G is also independent of the time with 

gij = gij (xk) and gi ' j '  = gi'j '(xk')' (6.b) 

where gij represent the "natural" components of the metric, i.e. the components of the 

tensor G in a natural basis e i whose vectors are the vectors tangent to the coordinates 

lines (see Fig. 1). Througout this paper indices like i,j ,k,i ' ,j ' , . . ,  will always represent 

components of tensors in this natural basis of vectors e i- 

The change of observer is characterized by a change of coordinate system which 

can depend on the time but in such a way that the metric remains independent of the 

t ime : 

X i= xi(xk',t) and x i'= xi'(xk,t) (7.a) 

and 
gij = gij (xk) and gr j '  = gi'j '(xk')" (7.b) 

Using the Ricci identity which expresses that the covariant derivatives of the metric 

tensor vanish, one can prove that the independence of G with respect to the time is 

equivalent to the following condition : 

e e ,e ,e 
V k ; l q - V l ; k  = O = V  k';r  + V  l ' ; k ' ,  (8) 

e i' ,e i 
where Vl =glk ( o x k ( x , t ) / 0 t )  (or v 1' = g r k ' ( 0 x k ' ( x , t ) / o t ) )  represents  the 

components of the "entrainment velocity", i.e. the components of the velocity of one 

observer with respect to the other. A semi-colon indicates a covariant derivative with 

respect to the variable whose index follows the semi-colon. 

If the change of observer is considered as a movement of an observer with respect 

to the other, condition (8) is easily recognized as the condition of rigid motion : the 

symmetric part of the velocity gradient vanishes in a rigid motion. 

So a change of observer can be seen as a rigid and time dependent change of 

coordinate system. 

Consider then a tensor T defined at each material point P and at each time t : 

T = T(P,t) 
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At time t ,  the history of this tensor for an observer 0 and for the material point P is the 

following function of t ' : 

t i j(P,t ' )  for _oo<t '<t ,  

where tij denotes the components of T in the natural basis located where the material 

point P is at time t. 

3.2  Corotational basis and intrinsic history for tensors 

We know that the history of a tensor is ambiguous because of the movements of 

observers with respect to each other. 

To avoid this ambiguity, one can attach rigidly a "privileged" observer to each 

material point of a continuous media and define the intrinsic history of a tensor as the 

history of this tensor with respect to this privileged observer. 

Gontinuous media ~ - -  - ~ .  
attimet / e~(xk't) 1 . ' ~  

~ , ~ " " ~  e 2 (xk, t) / 
xi:xi(xk'to't) J ~  ~ k . / 

. / I .  / Continuous media 
at tame t o 

Fig. 2 Corotational basis rotating with angular velocity 1/2 curl v 
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Let us see more precisely how this privileged observer can be attached to each 

material point. 

One can associate an observer with each material point, that is a coordinate system 

and the corresponding natural bases field. In fact, since different privileged observers 

are used to describe the histories of tensors for different material points, it is enough to 

explain how one can attach rigidly to each material point a basis of  vectors in which the 

components of  tensors are considered. 

Consider an observer or a space coordinate system and a continuous media at time 

to (see Fig. 2). To each material point P0 whose coordinates are Xo i corresponds the 

natural basis e i . Basis e i -the so-called corotational basis- attached rigidly to P0 is the 

same as basis e i at time to and rotates with the angular velocity of  P0, i.e. with angular 

velocity 1/2 curl v. 

The rotation of  the corotational basis is defined by the following equations : 

i i 
3 e i ( x o , t ~ t )  _ d e i ( x , t )  _ 1 

Ot dt 2 
curl v x e_i , (9.a) 

k 
e i ( x o  , t o t o ) =  e i (xok), (9.b) 

where x denotes the cross-product. 

J 
If  A i is the matrix defining the basis transformation from e i to e i  : 

J 
e i = A i e j ,  

equation (9.a) can be recast into the form 

J k j m r j 
/ ~ i  + v  F m k A i  =Ai W r .  (10) 

J 
In this equation the Fmk are the Christoffel symbols of  the bases field e i and W r j is the 

spin tensor. 
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So, for a general observer, the components in a natural basis of  the "intrinsic" 
k 

history of a tensor T at time t for a material point P (located at x 0 at time t0) is given 

by 

i k ! k m , t' 
A i- (x  0 , t)  A 1- (x  0 ,t) ti_ [ (x  , t  ) for _oo  < < t. (11) 

i i In In k , 
In this equation, A i- is the inverse matrix of A i and x = x (x 0 , tot  ) .  

3 . 3  " O b j e c t i v i t y "  o f  the  c o r o t a t i o n a l  bas i s  

It is important to prove that the history defined by (11) is actually independent of 

the observer. 

Consider two observers O and O' who build their own corotational bases e i and ei, 

from their own natural bases e i and e i'. 

First one has to know the transformation law for the vorticity tensor W r j for  a 

change of observer. 

Using the rigidity condition (8), it is easy to check that the transformation law for 

W r j reads : 

i j e 
W i,j, = x ,i' x j, W ij - v i';j" (12) 

In (12) a comma denotes a partial derivation with respect to the variable whose index 
i 

follows. So x ,i' is the jacobian matrix of the coordinate transformation corresponding to 

the change from observer O to observer O'. 

Thus W ij does not transform like a tensor for a change of observer because of the 

presence of  the second term which arises from the movement  of  one observer with 

respect to the other : the vorticity tensor is not objective. 

In contrast, one can prove that the rate of  strain tensor Vij (the symmetric part of 

the velocity gradient tensor) follows the usual tensorial law : 
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i " 

Vi,  j, = x ,i' xJ,j ' Wij 

and is thus objective. 

The vectors e i ,  ei,, ei and e i, can be expressed in terms of each other by means of : 

e i = A i  J e j ,  

e i, = Ai, j' e j,, 

i 
e j , = x  , j ,e  i .  

One can thus deduce : 

i i' i' " 
e i = A  L x ,i Ai '  e i ' = X i l e i  ' .  (13) 

Using the evolution equations (10) for the m a t r i x e s  AL J a n d  Ai ,J as well as the 

transformation law (12) for the vorticity t e n s o r  Wr J, it can be shown that the 

i' 
coefficients X t defined in (13) are constant in the course of time : 

i t 

dXi - 0 
dt 

So, the corotational bases e i and ei, associated with the observers O and O' are 

fixed with respect to each other for each material point. Therefore the intrinsic history 

(11) for tensors can be defined in any of these bases without giving rise to any ambiguity 

even if the observers are in movement with respect to one another. 

This property can also be seen as a consequence of the property of additivity of 

angular velocities. 
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Definition of an intrinsic time derivative : 

the Jaumann or corotational time derivative 

The corotational or Jaumann time derivative [8] of a tensor is defined by deriving 

the components of this tensor in a corotational basis and bringing the result back to the 

natural basis of an observer. 

Consider for instance a second order tensor T. If tik denotes the components of the 

tensor in the natural basis of an observer and tik its components in a corotational basis, 

those quantities are related by the tensorial law : 

i k 
t i k = A i  A k  t i k .  

After derivation of the two members of this equality with respect to the time and use of 

equation (10), one obtains the following expression which defines the Jaumann 

derivative of the tensor T : 

k , D tik Djaumtik - A i i A k  t ik- + w i J t j k + W k J t i j .  (14) 
Dt Dt 

The notation D/Dt denotes the material time derivative in which the ordinary spatial 

derivatives are replaced by covariant ones : 

k k 1 1 
Dti )  = ~ t i )  +v tij;k=tij-V (Fkitlj+Fkjtil). 
D t  0 t  

(15) 

The Jaumann derivative consists of the material time derivative of the tensor plus 

two terms accounting for the rotation of the corotational basis. 

Due to its intrinsic definition, the Jaumann derivative is independent of the 

observer. However this independence can also be checked explicitly by proving that this 

derivative follows the usual tensorial law for a change of observer. 
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It is also important to point out that the Jaumann derivative of the metric tensor 

vanish, so that raising or lowering indices commute with the corotational time 

derivation : 

ij 
Djaum~ij~ - Djaumg - 0 .  (16) 

Dt Dt 

5 Extended Irrevgrsible Thermodynamics and rh¢01ogical modelling 

We are now in a position to build up non ambiguous rheological models in the 

framework of Extended Irreversible Thermodynamics. For simplicity we shall restrict 

the present analysis to simple linear models. 

The viscous pressure tensor is split up into its trace and its deviatoric part : 

H v = pV G + pV, (17) 

where G is the metric tensor. 

In a natural basis, this relation can be written in the form : 

V v V 

1-lik = P gik + Pik. (18) 

Using the components in a corotational basis, one has also : 

V V v 

Ilik = p gik + Pik. (19) 

Following the usual procedure of Extended Thermodynamics,  we express the 

entropy as an analytic function of the classical variables and the viscous pressure tensor : 

v v v ik 2--~ v pvik  
s = s ( u , v ) + ~ - ~ - a p  gikP g + ~Pik 

This relation can be written, using the corotational components of the tensors : 

(20) 
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gik pV gik v = V_V_ v pV ik 
S S(U,V) + txp + V--Y--- 13 Pik 

6 T  2 T  
(21) 

Using the mass and energy conservation laws, the entropy production is calculated. 

One obtains : 

T c S =  v .v v Aik .vik 
- p  ( v i ; i + ¢ x p ) - P i k ( V  + ~ P  ). (22) 

It is important to stress that, to derive this expression, we have used equation (16). 

Now that the pressure tensor history has been intrinsically introduced, it is easy to 

come back to the usual components of the tensors in a natural basis and rewrite the 

entropy production as : 

T t~ s v . v v Aik Djaum pV ik 
= - p  ( V i ; i + ~ p ) - P i k ( V  + ~  ). (23) 

Dt 

The constitutive equations are obtained by expressing the thermodynamic forces as 

functions of the basic variables. If the relations fluxes-forces are assumed to be linear, 

one obtains a non-ambiguous version of Maxwell equations for a viscoelastic material, 

namely 

V 

~2 Djaum Pij v 
D t + Pij  = - 2 r12 ~/ij, (24.a) 

° '¢  %, 

)~0P +P  = - 2r10 V-v • (24.b) 

The positiveness of the entropy production implies that the viscosities 1"12 and rl0 are 

positive quantities. Moreover, if the entropy is assumed to be a convex function, the 

relaxation times ~,2 and ~,0 are also positive. 

Equations (24) are linear with respect to the pressure tensor. They can thus only 

describe situations where this tensor and the deformations remain rather small. 

However, it is no longer necessary to assume that the displacement gradients due for 
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instance to superposed rigid rotations are small as it was actually the case with the first 

"ambiguous" version of Maxwell equations (5) [10]. 

6 Conclusion 

We have thus been able to introduce in EIT an objective time derivative -the 

Jaumann or corotational derivative- in a rather natural way, using no other assumptions 

than the usual ones framing this theory. The objective time derivative appears as a 

consequence the necessity to make a choice and even a "good choice" for the description 

of the history of a tensor. As a matter of fact we have supposed that the history of a 

tensor at a given material point can be described at best by a privileged observer who is 

the material point itself, i.e. by an hypothetical observer attached rigidly to this material 

point. 

Finally, let us point out that what has been said here about objectivity does not 

validate or invalidate the famous "Principle of Frame Indifference" stating that 

constitutive equations should be frame independent [8,9]. In this work we have not 

introduced dependences on external forces in the relations fluxes-forces but it is not 

forbidden a priori in EIT. This point as well as the possibility to describe other objective 

derivatives and non linear models in EIT will be studied in details in a forthcoming 

paper. 
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C O N V E C T I O N  IN V I S C O E L A S T I C  F L U I D S  
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Universidad de Navarra. 

31080 Pamplona, Navarra, Spain. 

1. INTRODUCTION 

Convection takes place when a layer of fluid is heated from below. When a critical 
temperature difference is reached, the quiescent~ purely conductive state~ is replaced by 
some convective motions that  organizes themselves to form a regular pattern that  can 
be characterized by some wavelength. 

F i g u r e  1. The cell pattern in convective motions. 

This problem has been studied extensively [1][2] and can be considered a s  a prototype 
for studies of pat tern forming system% chaos, spatio-temporal intermittency, etc. [3][4]. 
The typical experimental configurations to study convection is not too complicated [5] 
and allow to measure with great precission the temperature and velocity fields inside 
the liquid layer, with or without movement. 

When the convective cell is filled with a normal fluid, convection forms a pattern 
of rolls as illustrated in Fig. 1. However, when the fluid has some special properties, 
i.e., a binary mixture, temperature dependent transport coefficient, polymeric fluids, 

*Also at Departament de Ffsiea, Universitat Autbnoma de Barcelona, 08193 Bellaterra (Barcelona), 
Spain. 

! Oh leave from Instituto de Fisiea, Universidad Cat61iea de Valparafso, CasiUa 4059, Valparaiso, Chile. 
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other symmetries and dynamical phenomena can appear as a consequence of convection 
[6]-[8]. 

The aim of the present work is to determine how certain theological properties affect 
convection [9][10]. But it is also interesting to notice that the precision of measurement 
can give some idea of rheological properties [11] of polymeric fluids used in convection. 
As ~t has been discussed in this meeting, there is not a unique theological model that 
cover the crowd of experimental data available in rheological studies of complex fluids. 
For the sake of simplicity we restrict the analysis to a model for viscoelastic fluid, the 
Oldroyd B model [12], that account for the mean experimental features and is well 
grounded on theoretical bases. 

We analyse in detail the linear stability of convection in this fluids [13]-[17]. These 
results are completed with a weakly nonlinear perturbative analysis [18]-[20] of the 
convective motions in an Oldroyd B fluid. This scheme is coherent, because it is well 
known that this rheological model is mainly applicable when the shear stresses in the 
system is not too big, which is the case when one considers a weakly nonlinear analysis 
of convection. 

In section 2 we recall briefly the main equations, boundary conditions and approxi- 
mations that describe convection in a general fluid. The constitutive relation used along 
this paper is also discussed, as well as the main contributions to the convective equa- 
tions. A complete linear analysis is made in section 3 in order to determine the different 
kinds of convective motions that can arise in the problem and the corresponding bi- 
furcations. We emphasize the influence of the two main viscoelastic parameters in this 
bifurcation analysis. Using the usual techniques one can determine the normal forms 
(amplitude equations) that characterize the different bifurcations near threshold. This 
is made in section 4. The coefficients on these equations are calculated in the simplest 
cases and the solutions are discussed. Finally, section 5 is devoted to summarize the 
main conclusions and a discussion of the results and perspectives for future works. 

2. E Q U A T I O N S  OF C O N V E C T I O N  IN A V I S C O E L A S T I C  F L U I D  

We consider a horizontal fluid layer of depth d heated from below (Rayleigh-B4nard 
problem). This system may be described by the following equations [1] 

V . v  = 0 (1) 

po[Otv + (v.  V)v] = - V p  + V.  r + p0[1 - a (T  - T0)]g (2) 

[OfT + (v.V)T] = ~V2T. (3) 

These equations account for incompressibility, momentum and energy balance under 
the so called Boussinesq approximation. That is a quite reasonable approximation that 
assume that thermal expansion only affects the external force term, that the transport 
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thermal coefficients is constant and that  the dissipation term in the energy equation 
is negligible compared to the thermal conduction term. In writing these equations we 
follow the usual notation: v velocity field, p the presure, r the extra stress tensor, T the 
temperature,  g is the acceleration due to gravity, a the thermal expansion coeffident, 
P0 the density and t¢ the thermal diffusivity. 

The system of Eqs. (1)-(3) is not complete. It must be supplemented by a relationship 
between the ~- and the variable v , the so called constitutive equation. In the simplest 
case one assumes the linear Newtonlan law 1" = rr~ , where r/is the shear viscosity and 

is the rate of strain tensor "~ = Vv + (Vv) T. Maxwen [21] proposed the fonowlng 
generalization to account for the "elasticity", as well as for viscous effects in fluids 

(4) 

where A1 is the relaxation time of the extra stress tensor, usually very small in normal 
fluids. But these two models are not sufficient for accounting the variety of theological 
properties of more complex fluids. Oldroyd [12] made a detailed analysis of the char- 
acteristics for a constitutive equation, to be independent of local rotational properties. 
To account for this fact he formulated a serie of constitutive equations that  have been 
a good guide to formulate and study viscoelastic properties. Here we do not intend to 
make an exhaustive analysis of this wide subject. We refer to the interested reader to 
good discussions in recent books [22]-[26]. For the sake of symplicity we take a model 
(the so called Oldroyd model B[12]) that ,  having the correct symmetry, account for 
viscoelastic properties for not too high strains. The constitutive equation for this model 
can be written in the form 

r + A1Dt~" = 7/(-~ + A=Dt#). (5) 

Here A2 is the retardation time, the finite time necessary for the elastic effects to become 
measurable. The derivative Dt is defined as 

Dry = 0tT- + (v.  V)~- - [(Vv)T • ~ - + ~-. (Vv)] (6) 

and leaves the constitutive equation (5) invariant under local rotations. 

Then we study the system of equations (1)o(3),(5) for convection in a viscoelastic 
fluid. The quiescent stationary solution of these equations is symply va = 0, ~'o = 0 
and T, = I'1 - ( A T / d ) z .  To simplify the problem we will take the two-dimensional 
case. As the velocity field is solenoidal, a stream function ¢ can replace the velocity 
field (vz, O,v~) = (0~¢,0 , -0~¢) .  This is a good approximation because the pattern 
that  arises in an infinite system in B6nard convection is a system of convective rolls, 
as sketched in Fig.1. If one takes the x-directlon perpendicular to the roll axis, the 
dynamics is purely two-dimensional, at least near the convective threshold. (Some 
secondary instabilities with y-variations are possible for sufficiently high heating [27]). 
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With this approximation the system of (1+3+1+6=11) eleven scalar variables reduces 
to (1+1+3=5) five scalar variables. In this 2D-approximation the extra stress pressure 
tensor has only three independent component r~ ,  r ~ , r ~  = ~'~=. But, in general, some 
combinations of these components are taken in theological studies: S(z ,  y, z) = "r,~- "rz~ 
the primary normal stress difference and U(z, y, z) = r=~ + ~'~ the trace of the stress 
tensor. 

As usual in a stability problem, the equations are rendered nondimensional by divid- 
ing the corresponding quantities by appropriated references: d, d2/t~, to~d, #tc/d 2 and 
fld for the lenght, time, velocity, extra stress tensor and temperature respectively. The 
second step is to consider perturbation around the stationary state ¢ = ¢,  + ¢' = ¢',  
~" = r, + r '  = ~-', T = T, + 0 where the prime ( ' )  indicates the corresponding per- 
turbation, and 0 is the temperature perturbation. After introducing the form (6) into 
the balance and constitutive equations (1)-(3),(5) one arrives to the following system 

vOtV2¢ = - P R O ,  O + PA2%= + Pcq~,S - J(¢ ,  V2¢) (7) 

o~0 = - o = ¢  + v~0  - J ( ¢ ,  0) (8) 

r O ,  r ~ ,  - r h 0 , A ~ ¢  = A2¢ - r =  - r [ J ( ¢ , r ~ , )  + (1 /2 ) (SV2¢) -  
- ( 1 / 2 ) ( U 0 ~ ¢ ) ]  + rh[J(¢,  A~¢) + 2(0= ¢V=¢)] 

(9) 

rots - 4FA0,0~Z¢ = 4 0 ~ ¢  - S - F [ J ( ¢ ,  S )  - 2 ( r ~ V 2 ¢ )  - 

- 2 ( U 0 ~ z ¢ ) ]  + r h [ 4 J ( ¢ ,  0_2~¢) - 2 ( V 2 ¢ A 2 ¢ ) ]  

(lO) 

ro, u = - u  - r [ j ( ¢ ,  u )  - 2(~-=A=¢ - 2(S0~=¢)] 

- 2rA[(20~:¢)  2 + (A~¢)  2] 

(11) 

where, for convenience, the prime ( ' )  is eliminated. Here J ( f ,  g) = cOzf. tg=g -c9=f.  cOzg 
denotes the Jacobian operator, V 2 = 0:2 + 0:2 the Laplacian operator and A 2 = 0~ -- 0~ 2. 

A group of four nondimensional parameters appear in these equations. These are 

R = pogaA Td3/#n the Rayleigh number 
P = I.*/pon the Prandtl number 
r = At~/a ~ the relaxation parameter 

A = A2/AI the ratio between the retardation time and the relaxation time. 

The Rayleigh number is the main parameter in convective studies and gives the ratio 
between buoyancy and dissipative effects. The Prandtl number measures the relative 
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importance of viscous effects compared to thermal conduction effects. The relaxation 
parameter F is the ratio between the viscous relaxation time and the characteristic time 
of vertical convective motions. Finally, A gives an idea of the importance of elastic 
relaxation effects compared with the viscous relaxation effects. 

These equations must be supplemented by boundary conditions (BC). As stressed 
from the beginning, we will take the simplest conditions, to have the insight on the 
main physical consequences of viscoelasticity and a mathematical analysis as simple as 
possible. Therefore we consider the following idealized BC: free and perfectly conducting 
upper and lower surfaces. (The system is laterally unbouded). The first mechanical 
condition lead to 

¢ = 0 ~ ¢ = 0  at z = 0 , 1  (12) 

and as a consequence 

r=z=OzS=U=O at z=O,l. (13) 

The second (thermal) BC is equivalent to 

0 = 0  at z = 0 , 1 .  (14) 

The advantage of these BC is that allow to obtain simple analytical solutions for 
Eqs.(7)-(ll). By defining the vector ~(z,  z, t) = [¢, 8, r=~, S, U] r one can be write these 
equations in a more compact form 

0tL~I' = M ~  + N(~,  q2) (15) 

where the matrices L and M are linear and the matrix N includes all the nonlinearities 
in Eqs.(7)-(11). 

3. L I N E A R  S T A B I L I T Y  ANALYSIS 

The first step in a stability analysis is to determine the influence of infinitesimal 
perturbation, i.e., those that allow to neglect the nonlinear terms N(q~, ~) on Eq.(15). 
Before starting the analysis it is interesting to notice that the variable U (Eq.(11)) 
does not play any role in the linear regime. This is so because we are dealing with 
an incompressible fluid, that requires V • v = 0. The trace of the stress tensor U is 
linearly linked to V • v and then it is zero in Newtonian fluids. In viscoelastic models 
supplementary terms appear, both linear and nonlinear. However, the linear part is 
just a decay equation and, therefore, this variable cannot contribute to destabilize the 
system. As a consequence, the linear analysis can be restricted to the four variables 
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(~, 6, ~ : ,  S). The solution of the reduced system of four equations can be developed in 
a normal mode expansion 

9 ( ~ , ; : , t )  = e st ) 
So cos(mk~) ~ o s ( ~ )  

(1o) 

where s is, in general, a complex parameter s : cr + iw. This development satisfy the 
BC (12)-(14). After introducing these solutions in the system of Eqs.(7)-(l l) ,  Eq.(15) 
leads to the general eigenvalue problem 

j - 1  

det(M.~, - s L y . )  = s ~ + ~"~ p,s '  = 0, m , n  > 1 (17) 
i=0 

where the matrices L,~. and M.~. correspond to L and M after applying the expansion 

L~,, = 

-q~,, o o  o 
0 1 0 0 

rAS~. 0 r 0 
-4rnnFATrk 0 0 I" 

(18) 

M , . .  = 

0 m k P R  - P 6 ~ ,  mn~rkP 

- r a k  - q , , ,  0 0 

- ~ °  o -~ o 
4mnTrk 0 0 - 1  

(19) 

where q~, --- m~k 2 + n2~r ~ and 6~, = n21r 2 - m2k ~ . 

For m and n different from 1, the characteristic polynomial (17) is a qua~ic function 
of s. But it can be proved that ,  as in R-B convection in Newtouian fluids, the most 
unstable modes are those with m = n = 1. In this case, one root of Eq.(17) is always 
negative (s = -1 / I" )  and, therefore, it has a stable eigenvector. Then the study of the 
eigenv'~ue problem can be reduced to the cubic characteristic polynomial 

p ( , )  = ,3 + ass + ba + c = 0 .  (2o) 

The different roots of this polynomial, allow to distinguish a critical surface in the space 
of parameters, as sketched in Fig. 2 and explained in the following. The possible roots 
of P(s)  give to the bifurcations [28][30] explained in subsection 3.1. 
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& 

F i g u r e  2. Critical surface in the space of parameters of the characteristic equation. 

3.1. B i f u r c a t i o n  in a v iscoelas t ic  f luid  

i) Codimension one stationary instability i [31] 

This correspond to a simple zero eigenvalue (8=0), which is obtained when c = 0 
and b > 0. From the first condition one can obtain the same that  for a Newtonian fluid 
R ,  = q6/k~ whose minimum is Re, = 27~r4/4 --- 657.5 for kc, = ~'/x/2 = 2.221. (Here and 
in the following, the subscript (), indicate quantities for stationary instability). The 
second condition (b > 0) shows that the instability acting on the system is stationary 
provided that  

(1 + P)  (21) 
r < [q P(1 - h) ]  

ii) Codimension one oscillatory instability w [32] 

A different case appears for roots with ~ = 0 and w ~ 0. These are pairs of complex 
conjugate roots that  correspond to a Hopf bifurcation [11]. In this case an oscillatory 
instability with a frequency w appears. This is possible when c = a .  b with b > 0. From 
this first equality one derives the form of the oscillatory marginal curve 

qS A q2 1 + P ,  (22) 
Ro = k--- ~- + k2F( 1 + AP)(q~(2A + AP + P-~) + ~ ) .  
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(The subscript ()o indicates quantities for the oscillatory convection). The condition 
b > 0 leads to the following equation 

= q er(1 - A) - (1 + P )  
> o .  ( 23 )  

r (1 + hP) 

It is obvious that  this formula is valid if 

r > (1 + P ) / ( q 2 P ( 1  - A)) .  (24) 

iii) Codimension two ( C T )  stationary bifurcation ~2 [33] 

Another  case can be found for a zero eigenvalue of multiplicity two (s 2 = 0). This is 
possible when c = b = 0 and from this one obtains 

1 + P  qS 
W e T = O ,  r C T  - q ~ P ( l  _ A)  , Ro = R ,  = Rc~" = k-- ~ . (25) 

iv) Codimension two oscillatory bifurcation ~w [34] 

It  could be possible to have a C T  Hopf bifurcation when one has s = 0 and s = 4-iw. 
This could occurs when c = a = 0 and b > 0, but is not possible for a Jeffreys 
viscoelastic fluid where always a > 0. 

3.2.  N u m e r i c a l  r e s u l t s  

The  influence of the different parameters on bifurcation is analysed in more detail in 
this subsection. In particular we will pay some at tention to the role of the parameter  
A that  distinguish Jeffreys and Maxwell models. 

In Fig. 3(a) some typical marginal curves R ( k )  are plotted. The  full curve concerns 
stat ionary stability. As explained above this is independent of P and I". Broken curves 
correspond to oscillatory stability for several values o f  A, with P = 10.0 and r = 0.1. 
For A = 0 (Maxwell model) the values obtained by Vest and Arpaci [14] and Sokolov 
and Tanner [15] are recovered. 

Fig. 3(b)(c) show the dependence of the critical wavenumber and the critical Rayleigh 
number  on A for P = 10.0 and r = 0.1. The critical wavenumber kco decreases and the 
critical Rayleigh number R~o increases with increasing A. For A I = 0.3156 the critical 
Rayleigh numbers coincide (the values that  characterise these frontier points will be 
labelled with the superscript ()Y in the following), and the rest of the critical values 
are k[,, = 2.221, k{, o = 2.810 and w[ = 5.279. This is the point where the lowest 
threshold changes from oscillatory to stationary instabilities. For A > A 1 overstable  
motions cannot appear spontaneously in a system of infinite horizontal extent.  However, 
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overstable motions are still possible in a system with a fixed wavenumber. In this 
si tuation CT points can be reached. In particular, the quadratic minimun in the curve 
.Ro(k) disappear for A(CT) = 0.3711, kc(CT) = 2.761, R~(CT) = 702.1 and ~vc = 0 (for 
P = 10.0 and 1 ~ = 0.1) leading to a degenerate CT point. 

800 
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K A A 

F i g u r e  3. (a) Marginal curves for stationary and oscillatory instabilities. (b) Critical 
wavenumber for s tat ionary and oscillatory instabilities, as a function of A. (c) Critical 
Rayleigh number  for stationary and oscillatory instabilities as a function of A for r = 0.1 
and P = 10.0. 

We present now the results on the influence of the parameter  A and P on that  frontier 
between oscillatory and stationary convection. Fig. 4 gather the main results. In Fig. 
4(a) we show the dependence of 1 ~f as a function of the parameter  A. In the region 
above these curves the system is unstable under oscillatory convection. (Stationary 
motions are the unstable modes below these curves.) For a fixed A, I "~' decreases with 
increasing P.  This means that  the higher the viscous effects, the lower relaxation time 
necessary to start  overstability for a fixed R. In the case of A = 0 (Maxwell fluid) and 
P -* oo the minimun value I '!  = 0.039 is obtained [15]. The results of the Newton fluid 
is recovered in the limit of A = 1 independently of the value of F. This is the reason for 
the divergence of F ! in that  limit. 

The values of the critical wavenumber for oscillatory instability in the frontier k[,o 
as a function of A is quoted in Fig. 4(b). Notice that  in the limit A = 0 (Maxwell 
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model) the values of k~o are greater than k~Y, and the diference between them increases 
with P. For example for P = 100 and A = 0, k~,o/k~., = 5.6 and ~ = 579.8, but that 
ratio decreases to 1.8 and the frecuency to w~ y decrease rapidly until in the limit A ~ 1 
(Newtonian fluid), one recovers k¢o ---' k~, independently of the value of P. 

The oscillation frequency w[ as a function of A is shown in Fig. 4(c). This fre- 
quency c~ is very large in the limit A --4 0, while it tends to zero when A ~ 1, because 
overstability disappears in this limit. From these results we remark that in the pure 
Maxwell model the critical wavenumber and the oscillation frecuency increase mono- 
tonically when P increases, reaching very unrealistic values. However, with a small 
retardation time or, equivalently, a small A, we recover more reasonable values for the 
critical parameters. 

1,0 
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Figure  4. Dependence of (a) the relaxation time r s, (b) the  critical wavenumber 
k[o. (c) The critical frequency w[ at the crossover between oscillatory and stationary 
convection, as a function of A, for various values of P. 

4. N O N L I N E A R  A N A L Y S I S  

The linear analysis allows to determine the different dynamical situations when the 
system becomes unstable. However, it cannot provide information on the different 
patterns that arise beyond the instability point. Therefore, a nonlinear analysis must 
be used to determine the convective motions observed in experiments. One of the most 
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useful weakly nonlinear method is the so-called Stuart-Landau method [35][36], which 
is based on the amplitude equations. It assumes basically that the constant amplitudes 
of the linear analysis (¢0, 8o, r0, So) in Eq.(16), are variable in space and in time above 
threshold. But these amplitudes depend on space and time on scales different from the 
usual ones [16]. Following the analysis of Stuart we can consider developments in series 
of a small parameter e, defined as 

R - Rc 
~- Ro (26) 

which indicates the supercritical heating. The next step is to assume that the solutions 
of the nonlinear problem can be developed as 

~/(X, Z , t )  : el/2~I/1 "~- e~I/2 "4- e3/2~Z]3 + ... (27) 

where @i corresponds to the solution of the linear problem in which the constants 
(¢0, 80, ~'0, So, [7o) are now assumed to depend on the slow time variable T = et. (Here 
for the sake of simplicity we do not consider the spatial variation). Correspondingly, 
the time differentiation in Eq.(15) should be transformed as 

o~ ~ o~ + ~Or. (28) 

The operators in Eq.(15) are expanded in the form [18] 

M = M1 + eM3 + . . .  (29) 
N = eN2(¢21.~1) + e3/2Ns(q21,q2~) + . . .  

Introducing these equations in Eq.(15) one arrives to the hierarchy of equations 

el~ 2 : 

e :  
e3/2 : 

(LOt - M~)q2~ = 0 
(LOt - M~)',~z = N ~ ( k ~ ,  ¢2~) 
( L O t  - M~) ' r~  = i ~ , r ~  + N~(,r~,  ~ )  - L O , ~  . 

The first equation is the linear problem, whose solutions are in the form 

¢(T)  s inkcx  s i n r z  

0(T) coskez  sin~rz 

rzz(T) s ink¢z  sin~rz 

S(T) cosk~z c o s r z  

(30)  

e "t + c.c. (31) 

where c.c. indicates the complex conjugate. 

Only one of the four amplitudes (¢(T), 0(T), ~'zz(T),. ,9(T)) is independent. These 
are linked by relationships that depend on matrices L and M. We apply this general 
scheme to the different bifurcations studied in section 3. 
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4.1 S t a t i o n a r y  b i f u r c a t i o n  

After introducing the general solution of the linear problem (31) with s = 0 into 
Eqs.(30) one arrives to relationships between the amplitudes in the form 

8°(T) k~'= : - - - ¢ ° ( T ) ,  ro (T)=-6~0¢°(T) ,  S ° ( T ) : 4 ~ r k c ° ¢ , ( T ) .  (32) 
qe° 

By applying the multiple scale perturbative expansion (30), the following amplitude 
equation for ¢(T)  is obtained 

r.¢° = e ° ¢ . -  g.~b~ (33) 

where now (') = d()/d(T),  e° = (R - R~°)/R¢° and the coefficients are 

P + I  
r(1 - A), (34) " r ° =  2 q~,P 

1 + F2(1 - A)(96s0_4_ 87r=k¢ :, + 807r4k~° .qo g4 4 ,~,1r2-2.. = ,4". (35) = - -  - -=c,-~, - ~°%, '  
2 4 g" 8q~ 16k~,q~. 

Notice that  r° is the relaxation time that  is derived from the linear theory, using the 
relation [37] 

= (36) 

where tr is the growth rate above threshold. For A = r = 0 the result for a Newtonian 
fluid r° = (P + 1)/q~oP is also recovered• 

In general, the slowing varying amplitude ¢(T)  is complex, but it obeys Eq.(33) 
whose coefficients are real. The main coefficient is g, in the cubic term when A = 0. 
When I" = A = 0 or A = 1, Eq.(35) gives the value g° = 1/8q~o of the Newtonian 
fluid• When it is positive Eq.(33) admits a stationary solution and the corresponding 
bifurcation is supercritical 

¢ =  (37) 

When g,/ro < 0 more terms in the developments (29) are needed. The case g, / r ,  = 0 
leads to a tficritical point, and g°/r° < 0 to a subcritieal bifurcation. After analysing 
Eq.(35) it is not too difficult to conclude that  g,/r° cannot be negative and, therefore, 
neither tricritical point nor subcritical bifurcation are possible in an Oldroyd fluid. The 
dependence of this coefficients on F for differents values of A is shown in Fig. 5. 
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Figure  5. The coefficient g,/r ,  as a function of F and A for P = 10.0. 

Tbls result is in contradiction with the claims in some recents works [19][20]. The 
discrepancy is not in the model used (Oldroyd B in our case, that includes as a particular 
case the Maxwell model used in those works) but on an unappropriated choice of the 
derivatives in the constitutive equation (5). The upper convected derivative introduces 
some extra non linear terms that eliminate the possibility of stationary bifurcations 
other than supercritical. 

4.2. H o p f  b i furca t ion  

In the case of an oscillatory instability the solution ~/1  must be written in the form 

/ Co(T) sink~oz s l n r z  
Oo(T) cosk:oz sin~rz 
"r::(o)(T) sinle:,,z s i n r z  
So(T) cosk,oz cosrcz 

e ~°~ + c.c. (38)  
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This solution of Eqs.(30) gives a relation between the amplitudes in the form 

kCO 
0o(T) = - q~o + i~o~i,¢o(T), (39) 

4~koo(1 + i~orA) Co(T), (40) 
r~(o)(T) = 1 + i~or 

6~o(1 + i~,~rh) . . . .  (41) So(T) = -~ ~ rot'l"). 

These expressions are taken to solve the perturbative scheme (30) and leads to the 
ampli tude equation 

"ro~bo = CoCo - g o  I¢0 I s ¢0 .  (42) 

The main difference between Eq.(33) and Eq.(42) is that  in the last the coefficients ro 
and go are complex, and now eo = (R - R,=o)/R¢o. Moreover, oscillatory convection is 
not possible for a Newtonian fluid under the usual conditions. In the particular case 
of a viscoelastic fluid this solution only exists when I" > (1 + P)/[q2P(1 - A)]. The 
coefficients "to and go take the form 

1 2 2 • _ _  qco(q~o + ~'~) r ( 1  - 4 2 • A)q~o(q~o + ,w¢) (43) 
~'o - q~o + iw¢ + k~oPtL° k~oPR~o(1 + i ~ , ~ r )  2 ' 

go 

(9~o 

qc~ ~r2 r2(1 - A) 
- -  .4(qco" + w~)2 + (8r  2 + 4iw~)(q~ o + iw~) + 16(1 + iw~Y)k~oRco (44) 

2 1 
+ 8"'k~° + 80"k~o - 9qc~2~ ~. - 4r'ko~.q¢~.)(- 1 + w 2 r - - -  ~ + (1 +' iwor)(1 + 2iwor) )" 

The corresponding Hopf bifurcation admits solutions in the form 

¢0 7~oe ~,  Ro eo eo go 
= = , ~ = imTo Ira "P.. T + c o n s t .  (45) 

Now the different kind of bifurcation is given by the sign of Re (go/Vo). From Eqs.(15)- 
(16), one can prove that Re (go~to) > 0 and, therefore, the bifurcation is always su- 
percritical in a Oldroyd B fluid. In Fig. 6 the dependence of this parameter  on 1" for 
different values of A ( P  = 10) is shown. For a fixed A, a similar behaviour of Re (go/Vo) 
as a function of A is obtained. 

As in the case of stationary bifurcation these results do not agree with those obtained 
by Zielinska et al. [19] and Brand et al. [20]. The discrepancy here has the same origin 
that  in the stationary case. 
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Figure  6. The coefficient R e  ( 9 0 / % )  as a function of I" and A for P = 10.0. 

5. C O N C L U S I O N S  AND F I N A L  D I S C U S S I O N  

By means of a quite general model we have shown in the present work how con- 
vection can be affected by viscoelastic coefficients. The Oldroyd B viscoelastic model 
(with upper conveeted derivatives) have been taken because it allows to fit quite well 
viscoelastic properties of polymer solutions, at least for moderated shear stresses. 

The retardation time A, introduced to generalize the Maxwell model, has an impor- 
tant influence on the linear analysis, both for stationary and oscillatory convection. A 
complete linear analysis, with the different kinds of bifurcations have been presented. 
The possibility to obtain degenerated C T  point have been discussed, as well as the range 
of parameters for which stationary and oscillatory motions can coexist. 

A weakly nonlinear analysis complete the present study. The main conclusion of 
this analysis is that the stationary bifurcation and the oscillatory bifurcation are always 
supereritical. Subcritical bifurcation and trieritical points are not allowed for Oldroyd 
B fluids, when the appropriated derivatives are taken. 

The present work have been restricted to the unrealistic case of free-free boundary 
conditions. However, even in this simplified ease many dynamical phenomena can be 
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present (traveling or standing waves, coexistence of stationary and oscillatory motions). 
We hope that  this analysis would stimulate new experimental works to determine the 
main features of convection in viscoelastic fluids. A complementary task, that could 
give some insight on theological properties, is to take advantage of the precision of 
experiments in convection to determine some coefficients of polymeric fluids. 
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7900 Ulm, Germany 

Abstract  

Standard relaxation equations contain integer-number differentials. Applying the 
fractional calculus we derive and solve fractional relaxation equations. Maxwell's 
theological constitutive law will be discussed in detail, and the fractional form of 
the Maxwell equation will be investigated for different initial value conditions. A 
comparison with experimental relaxation data supports the fractional model. 

1.  I n t r o d u c t i o n ,  F o r m u l a t i o n  o f  t h e  P r o b l e m  

One of the first theoretical concepts to model viscoelasticity has been proposed (in 
1867) by Maxwell [1], whose rheological constitutive law 

d,~ a7 ~r + ~'O-g = '7~- (i) 

relating stress (a) to strain (7) forms the basis of Maxwell's theory of elasticity (sup- 
plemented by the Kelvin-Voigt theory of retarded elasticity). Here, r0 = ~//G0 with ~/= 
viscosity, l /Go equilibrium compliance. The Maxwell theory has first been applied to 
model viscoelasticity in relation to two fundamental processes: 

(i) straining (tension or compression) of cylinders of various colloidal materials under 
constant stress, and 

(ii) relaxation of stress of the same material held at constant strain. 
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For constant strain (7 = 7o = c o n s t ) ,  Eq. (1) integrates to 

= (2) 

However, many experimental data sets could not be fitted by Maxwell's relaxation law. 
Instead, when Kohlransch [2] carried out relaxation experiments on various materials in 
order to study mechanical creep he came to the result that many of his data could be 
fitted much better by the empirical law (stretched exponential) 

= , (0 < < 1) (a) 

indicating a slower decay than predicted by an exponential relaxation (fl = 1). In 1970 
Williams and Watts [3] postulated the same function for a successful description of dielec- 
tric relaxation in polymers. In recent years much attention has been focused on physical 
models prescribing the common feature that is responsible for generating the stretched 
exponential decay law. 

During the first half of this century a quite different approach to viscoelasticity has 
been proposed: 

• In 1921 Nutting [4] observed that stress-strain data sets of many complex materials 
closely obey the empirical law, the so-called Nutting equation 

a = Co3,* -k (4) 

which (for constant strain 7 = c o n s t )  indicates inverse power-law relaxation. 

• In 1936 Gemant [5] and in 1946 Bosworth [6] analyzed experimental results obtained 
from elasto-viscous bodies, and gave a definition of plasticity that incorporates the 
concept of "fractional differentiation". The idea behind all that is to find an appro- 
priate approximation for viscoelastic bodies that are neither a Hookean solid nor a 
Newtonian fluid but something in between. This "principle of intermediacy" might 
be applied to interpolate between fluid behaviour 

dr 

and solid behaviour (Hooke's law) 

( i i )  er = a 7 , a = c o n s t .  

Consequently, for an intermediate body the guess was [5,7] 

du7 
( i i i )  '~ = X~ d t , ,  , X~ = c o n s t  , ( 0 < ~ , < 1 )  

Generally one may write [6] 

d~,y 
= f (d-7)  

including all three cases (i) to (iii), i. e. # = 1 (case (i)), g = 0 (case (ii)) and for 
an intermediate body one expects 0 < g < 1. 
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Fig. 1 Stress relaxation for constant strain: (...) Nutting Eq (4) for c070 = 1950 
and k = 0.5, (- - -) stretched exponential law (3) for a0 = 250, 7-o = 350 and fl = 0.6, 
experimental data from Kef. [16] 

In the following sections we extend the standard Maxwell theory and related relax- 
ation equations by applying the fractional calculus to the standard relaxation equation 
d f /d t  = - A f ( t )  and to Maxwell's constitutive equation (1) in order to come up with the 
corresponding fractional equations. The solutions will be presented and will be compared 
with experimental data  sets. 

2. Fractional Calculus, Definit ions,  Historical  
Background 

We first mention that the fractional calculus is old but little applied. Hence, it will 
be of some advantage to sketch briefly the main ideas. We are following closely Oldham 
and Spanier [S] and Ross [91. 

When in the 17th century the (integer-number) differential calculus had been devel- 
oped, Leibniz asked in a letter addressed to L'Hospital: 

Can the meaning of derivatives of integral order a ~ f ( x ) / d x  '~ be extended to 
have meaning when n is not an integer but any number (irrational, fractional 
or even complex-valued)? 

L'Hospital responded: 
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What if n be 1/27 , @ =7 for f ( x )  = x dx112 

Leibniz, in a letter dated from Sept. 30, 1695, replied: 

It will lead to a paradox, from which one day useful consequences will be 
drawn. 

124 years later (in 1819) Lacroix presented the result for f ( x )  = x: 

d l / 2 x  2 

How can we understand this result? Integer derivatives of powers of x can be defined by 
making use of the gamma function, i.e. take 

d~x ~ _  m! _ = r ( m + l )  xm_ ~ 
f ( x )  X TM 

d x -  r ( m - n + l )  

We generalize n --* • and F(n) --+ F(t,), and find (formally) 

v=112 dUx m r ( m  + 1) z m _  ~ ~ I"(2) xl/2 1 x l / 2  

d x  ~ - r ( m  - v + 1) r ( 3 / 2 )  - v ~ / 2  " 

Thus, generalizing the integer-number differential calculus to include fractional numbers 
0 < v < 1 one observes that  the gamma function plays a crucial part.  
In 1834 Liouville asked: 

If d " f ( x ) / d x  ~ = 0 has a complementary solution, why should not 
d~f(x) /dx  ~ = 0? 

In 1847 Riemann generalized his theory of integration: 

(i) classic, standard, integer-number integration theory 
Consider a differential equation 

y(~)(t) = F(t)  (m = 1 ,2 ,3 , - - .  , y(") = dmy/dt  m) 

and a given set of initial values 

= 0) = (0 < e < m - 1 ) .  

If F(t)  is continuous over [0, t], then one can integrate the initial value problem 
to obtain the unique solution 

m--1 
y(t) = F, Ylt~/£! + oDtmF(t )  

t----O 

where 

t 
f dT"(t -- r ) m - l F ( T )  oDTmF(t) := r~)  b 

defines Riemann ' s classic (integer-number) integral operator. 
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(il} fractional generalization of Riemann's integral operator 
If m is not an integer but any number q ¢ 0, - 1 ,  - 2 , . . . ,  then oD~ "q may still 
be meaningful and defines for q > 0 the Liouville-Riemann (LR) fractional 
integral operator 

t 

1 f d r ( t  - T)q-lF(r)  (q > 0) (5) °D;qF(t) "- F(q) 0 

(iii) fractional differential operator 
The fractional differential operator 0D~' for u > 0 is defined by 

oD~F(t) := ~-:Z-J(oD~-"F(t)) 
dx 

< 0) (0) 

i.e. within the context of the LR fractional calculus the operation "fractional 
differentiation" can be decomposed into a "fractional integration" 0D~ -(n-~) 
followed by an ordinary differentiation dn/dx ~, where n is the least positive 
integer greater than v. 

We note that  there are further definitions of fractional integral and differential oper- 
ators like, for instance, a definition given by Weyl. But in what follows we are strictly 
dealing with the LR fractional calculus. In the next sections we will derive some fractional 
relaxation equations by starting out with the corresponding "classic" standard (integer- 
number) differential equations. Some caution, however, must be taken concerning the 
incorporation of initial values. Thus, for instance, a few investigators have represented 
fractional differential equations just by formally replacing the operator d/dt by d~/dt ~ in 
the original integer-number differential equation. Here, we present a consistent procedure 
of incorporating initial values into the fractional formulation by following the method 
already outlined for the derivation of fractional diffusion and wave equations [10] and for 
the fractional Boltzmann equation [11]. 

3 .  F r a c t i o n a l  R e l a x a t i o n  E q u a t i o n s  

3.1. Nutting Equation for Constant Stress 

The empirical Nutting equation 
= k (7) 

co 

relating stress (a), strain (7) and time(t) can be put in a form of a fractional differential 
equation. First we regard the case of constant stress condition a = const = ao. If we 
fractionally differentiate (7) for a = Cro with respect to time we come up with a fractional 
differential equation: 
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d ' 7 ( t )  

dt" 

d Oo d 
- oD~7(t) = ~ oD~-lv( t )=  ~ oDd- i t  k 

t 

__ ° ° ,  1 o/ Co dt r (1  ~)  (t - ~-)-'~-kdr 

= ao d 1 I'(1 - #)I'(k + 1) tk_.+ ~ 
Co dt r (1  - . )  r (k  - ~ + 2) 

= a0Co F(kF(k-+~l)tk- . t  t (0 < tt < 1, k > -1)  

Now, identifying the order/t of the fractional differential operator 0Dr ~ with the power-law 
exponent k, i.e. taking k =/ t ,  one obtains 

d'7(t) _ aOr( ~ + 1) = const. 
dt~ Co 

Upon eliminating a0/Co via the Nutting equation (7) we find the following fractional 
differential equation for the strain if(t): 

d ' 7 ( t )  
dr,  - F(# + 1)v(t)t-" 

Of course, the solution of this equation is the Nutting equation for constant stress condi- 
tion. 

3.2. Nu t t i ng  Equat ion  for Cons tant  Strain 

For the constant strain condition f f  --- V0 = const  the Nutting equation reads 

~(t) = Co~0t -k (8) 

delivering an inverse power-law decay for the stress function a(t) .  It is obvious that cr(t) 
satisfies the homogenious (self-similar scaling) relation 

cr(~t) = A-kc~(t) (9) 

indicating that k might be interpreted as a similarity (fractal) dimension in the spirit of 
Mandelbrot [12]. Here we note that a general relation between Mandelbrot's definition of 
a fractal (or similarity) dimension and the fractional order # of the fractional differential 
operator 0D~ is not known. However, very recently [13] it has been shown that for a 
certain class of L~vy-type distribution functions such a relation does exist. 

Taking fractional differentiation of (8) we find 

- j ~  = co~Or(T: 0 < # < 1, k < 1 

Again, identifying k = # and eliminating CoTo via the Nutting equation (8) we obtain 

d,~(t) ro - , )  . , ~ _ ,  
- . 
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3.3. E x p o n e n t i a l  R e l a x a t i o n  E q u a t i o n  an d  its  F rac t iona l  G e n e r a l i z a t i o n  

We start with the standard exponential relaxation equation 

d f ( t ) _  A f ( t )  (10) 
dt 

and "transform" to the Riemann integral (as in Section 2, with F( t )  ~ - A f ( t )  ). The 
result is a fractional integral equation (FIE) (0 < q < 1) with incorporated initial value 

fo --- f ( t  = 0): 
f ( t )  = fo - A oD~q f ( t )  (11) 

Inverting the FIE (11) one obtains the corresponding fractional differential equation 
(FDE) by applying the inverse operator 0D[ with 0 < u < 1 to Eq (11): 

o D [ f ( t )  = oD[fo - ;~ oD[ o D t q f ( t ) ,  oD[ oD7 q = oD[ -q 

Fractional derivative of a constant f0 is (according to Eq (6)) 

oVt fo = ~ oV~ fo 

t 

1 / /12/ 
r (1  - u) (t - r ) - " d r  - C(1 - v) 

Thus, for u = q one finds 

f ° t -q  A f ( t )  (0 < q < 1) , (13) oD~f( t )  - F(1 - q) 

which is the fractional differential equation (FDE) with incorporated initial value fo --- 
f ( t  = 0). In the limit q -~ 1, Eq (13) is sent back to the original exponential relax- 
ation equation (10), or more precisely to d f / d t  = fo6(t)  - A f ( t ) ,  if use will be made of 
limq--,1 t - V r ( 1  - q) = 5(t). 

3.4. The Fractional Maxwell Equation 

Following the procedure outlined in subsection 3.3. we now derive the fractional Maxwell 
equation by starting out with the standard equation (1) 

which may be written as 

a) dT(t) 
dt 

da(t) dT(t) = ¢(t) 
~(t) + ~ o - ~ -  = ~ - - ~  

= + ( t )  , b) ( r ( t ) + r 0 ~ [  j = + ( t ) .  

Applying Riemann's integration theory to a) and b), respectively, one gets 

a') 7( t )=  3'0+(1/7) 0D;~0~(t) , ( 0 < # < 1 )  
b') a( t)  = a0 - (l/T0) oDtqa( t )  + (l/T0) oD;qO(t )  , (0 < q < 1) 

(14) 
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to be solved for the initial condition cr(t = 0) = aO = const  , 7o = const.  Now we apply 
the operator 0D~ from the left to a') and obtain 

70t-~ 
0D~7(t) = 0D~'7o + (1/7/)¢(t) - F O - - # )  + (1/~/)q)(t) . 

Here we eliminate (I)(t) and insert it into b'). The result is 

r0Crot-q r/7ot -~' 
~(t)  + T0 oD ,~ ( t )  - r - - (~ -q)  r(1 - ~-----~ + ~ oD~7(t)  (15) 

representing the fractional version of Maxwell's rheological constitutive law with incorpo- 
rated (finite) initial values ao = *r(t = 0) and V0 = const.  

Discussing stress relaxation experiments carried out under constant strain condition 
7 = 70 and for the initial condition a(t  = 0) = cr0 (finite constant), Eq (15) reduces (since 
for 7(t) = 70 the last two terms on the right hand side cancel) to 

T°Cr°t-q (16) a(t)  + T0 oD[cr(t) - ~ - ~ - - ~  . 

This result looks quite similar to Eq (13) replacing there f ( t )  -+ a( t )  and A --+ l/T0. The 
solution of (16) can be found by going through Laplace and Mellin transform techniques 
[8, 10] and is given by 

( - tq l~°) j  ~(t) = ~o (o < q < 1) (17) 
j=oF(1 + q j )  ' 

In the limit q --* 1 one just recovers the exponential solution. The solution (17) satisfies 
the initial value condition ~r(t = 0) = a0. For large t-values (t ~ c¢) one finds from (17) 
asymptotically inverse power-law decay cr(t) ,,~ t -q (Nutting Eq (8)). In Figs. 2 and 3 we 
compare the result (17) with various experimental data sets and we find good agreement. 

Solving the fractional Maxwell equation (15) for constant stress a = ~ro gives 

aot ~ 
7(t)  - 70 - ~r(1  + ~) ( i s )  

which is for the initial value 7(t = 0) = 70 just the Nutting equation (7). 
We remark that our method for deriving fractional relaxation equations, presented 

here, works well for all those initial value problems for which the initial value a( t  = O) = ao 
is a finite constant (or zero). However, some investigators are interested in stress relaxation 
functions ~r(t) that diverge for t --+ 0 (~r(0) ~ oo). Fractional differential equations 
for this sort of solutions have also been discussed in literature [8,14,15]. Concerning 
the Maxwell equation the starting point is again Eq (1) in which one replaces formally 
d a / d t  --* oD~r( t )  and dT/d t  --* oD~7(t) ,  respectively, leading to the fractional differential 
equation [14] 

¢(t )  + To oD[cr(t) = 71 oDt"7(t) (19) 

which can be transformed to a fractional integral equation by applying the fractional 
integral operator oD; -q from the left obtaining 

oDTqa + To oD7 q oD~a = 7/oD~ -q 0Dt"7(t) 
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Fig. 2 Data  points from Ref. [16] for two different initial conditions, (...) Nutting 
Eq (4) and ( - -  -) stretched exponential law (3) for the same parameters  as in Fig. 
1, ( - - )  this theory, Eq (17), for ao = 250,ro = 30,q = 0.6, ( . . . .  ) this theory, Eq 
(17), for ao = 65, ro = 30, q = 0.6. 

where, oD7 q oDqta(t) = a( t )  - ¢1 tq-1. Considering again stress relaxation under constant 
strain condition 7(0 = 70 = const  we finally arrive at the fractional integral equation 

oD-~qa(t) + roa(t) - clrot q-1 _ 7FIo oDtqt-g 
r(1 -~) 

~7o 
= r(q - / ~  + 1) tq-" (20) 

Here, cl plays the role of an integration constant which determines the singular behaviour 
of a(t) for t ~ 0. 

Taking 1' = 1'0 (constant strain condition) in (19) we get the fractional differential 
equation (FDE) 

(21) act ) + ro oD~a(t) - F(1 - g) 

The general solution of the homogeneous equation 

~rh(t) + rO oD~rh(t) = 0 

is given by [8] 

= t ' - '  (22) 
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Fig. 3 Stress relaxation data for a plastic material from l~f, [7], (--) this theory, 
Eq (17), for the parameter choices a0 = 14, r0 = 18, q = 0.67. 

where Co is an arbitrary constant. Since 0 < q < 1, this result diverges (,~ t q-~) for 
t ~ 0. The complete solution of the FDE (21) is directly obtained by Laplace and Mellin 
transform techniques and is given by 

(,__l./q~ i-z), ( ,  V j+~-" 

+r{O x~o, j~o r{,j+,) ~,~o~--~) (23) 

An appropriate choice of the integration constant c1(= CoI'(q)) shows that the second 
term on the right hand side (rhs) of (23) represents just the solution (22), ah(t), of the 
homogeneous fractional differential equation, and the first part on the rhs of (23) is an 
inhomogeneous solution of (21) which is being discussed by Friedrich [15]. It follows that 
for q = # the inhomogeneous part of the solution (23) becomes idential to (17) if we 
identify ~l"fo/ro = ~ro. 

4. F inal  C o m m e n t s  and C o n c l u s i o n s  

We have discussed rheological behaviour of viscoelastic bodies in relation to two experi' 
mental situations: (i) the straining under constant stress, and (ii) the relaxation of stress 
under constant strain condition. The theoretical concept we developed is strictly based on 
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the Liouville-Riemann fractional calculus. We have shown how the initial value problem 
for first-order differential equations can be generalized in a consistent way to the corre- 
sponding initial value problem for fractional differential equations. As a leading example 
we have studied Maxwell's constitutive law and its fractional generalization. The most 
general solutions of the fractional Maxwell equation have been presented for different 
initial value problems. We have analyzed experimental data sets which could not be in- 
terpreted by the standard Maxwell equation. However, these stress relaxation data could 
be fitted accurately (Fig. 2 and Fig. 3) over the measured data range by our solution of 
the fractional Maxwell equation, and thus giving support to the fractional theory. 

One could object that the fractional calculus has a mathematical meaning at the best, 
but no physical interpretation whatever: so it seems to be unlikely to have a fractional 
differential in a basic physical law (differential equation). Indeed, Newtonian physics is 
so defined as to produce the integer-number differential concept which defines physical 
quantities like, for instance, the velocity to be the first differential of length with respect 
to time. Acceleration is defined as the second differential, and forces, energies etc., i.e. all 
physical properties defined within the context of Newtonian physics, have integral (and 
not fractional) indices of mass, Iength and time. 

On the other hand, there is no doubt that the fractional calculus offers an extremely 
powerful mathematical technique for dealing with non-standard, unfamilar or even "patho- 
logical" functions which have been proposed in order to fit experimental observations. 
Power laws and L6vy (distribution) functions are prominent examples. Fox functions do 
probably represent the most general class of such functions. Wright functions, Mittag- 
Leitter functions, L6vy functions and other pathological functions are just subclasses of 
Fox functions. In a forthcoming paper [17] we are discussing Fox-function representations 
of the solutions of fractional relaxation equations. 

Our conclusion is the following: even if the basic physical laws do not contain frac- 
tional differentials, it is still possible - in many cases - to transform the primary physical 
laws to "secondary" differential or integral equations of fractional order, which can be 
solved by applying Laplace and Mellin transform techniques. For instance, use has been 
made of the fractional calculus very recently [13] in order to formulate (and to solve) a 
fractional integral equation for a certain class of L6vy distribution functions being impor- 
tant for the physical interpretation of non-standard random walks (L6vy flights). Another 
example has been given by Douglas [18]. He transformed Feynman's path integration for- 
mulation of surface interacting polymers into an equivalent integral equation approach. 
An exact solution of the surface-interacting partition function has been obtained by using 
the fractional calculus. 
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WITH FRACTIONAL DERIVATIVES: THERMODYNAMICAL CONSTRAINTS 

Christian Friedrich 

Institut f/Jr Makromolekulare Chemic, Universit~it Freiburg i. Br. 

Stefan - Meier - Strage 21, D-7800 Freiburg i. Br. 

Summary: This paper deals with relaxation functions of rheological constitutive equations 

with fractional derivatives and with constraints on parameters contained in these 

constitutive equations. The constraints guarantee the consistency of the constitu- 

tive equations with thermodynamical principles like nonnegative rate of mecha- 

nical energy dissipation. 

1. Intoduction 

Gemant [1] and 10 years later Scott-Blair [2,3] were the first who described some dynamic 

phenomena like creep, stress relaxation or oscillatory shear of viscoelastic materials in terms 

of theological constitutive equations with fractional derivatives. In his discussion the 'q'heory 

of Quasi - properties", Scott-Blair formulated the necessety to introduce such constitutive 

equations with fractional derivatives. His "Principle of Intermediacy" gave him the convic- 

tion that it is possible to express material behaviour laying between the Hookean solid and 

the Newtonian fluid in terms of derivatives laying between the zeroth order derivative of 

strain (the strain itself) and the first order derivative of strain (the strain rate). Scott-Blair 

determined the creep and relaxation functions of this easiest constitutive equation with 

fractional derivative. 

The theory of fractional derivatives (better, derivatives of fractional order) is almost as old 

as the theory of the known calculus of integer order. A historical abstract ot this interesting 

development in the area of mathematics is given in [11]. 

Some time later, Slonimsky [4] generalized this typ of constitutive equation further and for- 

mulated models laying between the Hookean solid and the viscoelastic Kelvin-Voigt solid. A 

Generalized Function approach was used to describe fractional derivatives in a formal 

manner. 

Smitt and de Vries [5] also calculated the relaxation function and other material functions 

arising in different rheological experiments. Like Scott-Blair, they found that the relaxation 
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and retardation functions are of power law type for the very simple constitutive equations 

with fractional derivative. 

Since the early 80's, US-rheologists started to generalize the fractional derivative approach 

in several directions. They successfully showed the connections between molecular theories 

and the empirical fractional calculus method to viscoelasticity [6], generalized this type of 

constitutive equation by introducing fractional derivative operators and looked for its beha- 

viour in the frequency domain [7] and developed constitutive equations with fractional rates 

of deformation like fractional White-Metzner deformation rate tensors [8]. 

Bagley and Torvik [9] were the first who tried to calculate the complex modulus G*(og) and 

its components G'(w) and G"(w) as well as the relaxation function G(t) and the retardation 

function J(t) for a five-parameter model with two fractional derivatives of different orders. 

This model is called in this paper the fractional standard solid (FSS) includes the four- 

parameter fractional Maxwell model (FM). It's definition is given later. While it is easy to 

determine G*(og) (see also [5-7]), the determination of G(t) and J(t) was only possible in a 

numerical manner.These results are not instructive enough to get a feeling of its behaviour. 

Thermodynamic restrictions on parameters of the model were calculated on the basis of the 

functions G'(~0) and G"(co) and, as will be shown, are restrictive. 

Only after a way was found to solve the differential equations arising from fractional deriva- 

tive models analytically [10], the questions of thrmodynamical admissibility can be answered 

with the help of restrictions concerning the relaxation or retardation functions. 

The aim of this paper is to determine the thermodynamical constraints for the fractional 

Maxwll model, the fractional Standard Solid and other models on the basis of the relaxation 

function. 

2. Fractional derivative models and its relaxation functions 

In this part of the paper the relaxation function of the FM model will be developed with the 

help of the Laplace transform. The relaxation functions of the other models can be deduced 

in analogy. 

First of all, the fractional Maxwell model will be introduced in an empirical manner, follo- 

wing Scott-Blair's "Principle of Intermediacy". Using a fractional derivative of order a in- 

stead of the first order stress derivative and a fractional derivative of orderfl instead of the 

first order strain derivative the following four-parameter Maxwell model with fractional 

derivatives is obtained: 
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V + ~,aDa [V ] = ~,fl Go D/3[~, ] 0 < a , / ~  _<1 (1) 

In Eq. (1), r is the stress tensor, ), the deformation tensor,,!, a time constant and G O the 

modulus. What concerns the definition of a fractional derivative 19" is refered to [11] and 

Appendix. 

Eq. (1) can be transformed in an equation for the dimensionless relaxation function, g,  if 

the following deformation history Yn = Yo h(t) is introduced, generating a shear stress com- 

ponent r,~. ?~2 is the shear component of the strain tensor, Y0 is the jump height and h(t) 

the unit jump function. These conditions lead to the following equation: 

-8 
g + D a [ g  ] = Dfl[ 1 ] - x x > 0  (2) 

r(1 -/3 ) 

where x = t/A. is the dimensionless time and g is defined in the following way: g = G(t)/G, 

and G(t) = z',2 / Y0" If Eq. (2) is transformed in the Laplace domain (see Eq. (4) of Appen- 

dix), then Eq. (3) is obtained for the Laplace transform of the relaxation function L [g] 
-----g. 

+ y"g- - c = y # - I  (3) 

In this equation' y '  is the dimensionless Laplace variable. The inverse Laplace transform 

[10] yields Eq. (4) under the assumption that the function g at the abscissa x = 0 can have a 

finite value (this means c = 0). 

( ) k 

g(t) = (t/2) a-fl ~ (t/~,) ak x = t / 2  (4) 
k=0 F (ak  + v)  

v = a - f l+ l  

The assumption c = 0 will be used throughout this paper without loss of generality. 

It can be seen that the relaxation function consists of two parts: the power law part and a 

infinite series known under the name Generalized Mittag-Leffier Function (GMLF). The 

behaviour of this function is explained in [10,14] as are some details in the Appendix. Eq. (4) 

can be presented as follows if the behaviour (A5) is taken into account and a normalizing 

factor F(v) is introduced (this normalization is equivalent to a decomposition of the modulus 

G O in following way: G o = G0oW(v)). 
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g(x)= r(v) x--p E(.x~) x=t/;~ 

v=a-fl+ 1 
(5)  

Special cases of this relaxation function are possible for fixed parameters. 

a = f l = l  

g = exp ( -x)  

a = 1 / 2 , ~  = 1 

g = x ~ [ 1  - F ( ½ ) x  u e x p ( x ) e r f c ( x  ~) ] 

a = ~ = 1 / 2  

g = exp(x)  e r fc(x  ~) 

(6) 

These solutions are also given in [9] or [12]. 

Before considering the compatibility of Eq. (6) with thermodynamics, the behaviour of g(x) 

at large times is explained. It is seen from the asympthodic expansion for GMLF according 

to Eqs. (A6) and (A7), that in the cases a and/or v smaller than 1, the GMLF is no longer of 

exponential type. It displays power law behaviour. These asympthodic expansions yield in 

connection with Eq. (5) the Eqs. (7) and (8). 

F ( l + a )  -0+a) 
g(x) ¢c x x--, oo for fl = 1 (7) 

r ( l - a )  

r (  v ) -8  
g(x) ¢c x x --, 0o for  0 < fl < 1 (8) 

r( 1-8 ) 

Now the fractional Standard Solid model will be considered. This is a FM model with an ad- 

ditional term of zeroth order on the right side (it is the deformation only) modelling the 

solid-like behaviour with the help of the dimensionless equilibrium modulus g® = G / G  0. 

If is used the same procedure as in the case of FMM the following equation is obtained. 

gss = gu + g®[1 - E s(-X~)] (9) 

gssiS the dimensionless relaxation function of this model which can be presented as a sum of 

the relaxation function of the FMM, gM' according to Eq. (5) and an additional term with g® 

as the prefactor. For this function analogous results for their behaviour at long times can 

beoutlined. 
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If a rheological constitutive equation is formulated, the thermodynamic behaviour of this 

"model material" is also prescribed. Because thermodynamics impose restrictions on physi- 

cally realizable processes by the second law, it is necessary to consider the thermodynamic 

compatibility of a given rheological constitutive equation. That means, we have to look after 

conditions under which the constitutive equation in general or the parameter functions or 

parameters in special in it guarantee nonnegative rate of mechanical energy dissipation d=. 

This can be formulated [13] by the following equation 

6 = ¢b - p i >_ O, with t~ = "¢,2 )~,2 2 (10) 

where • is the stress power which is in the case of relaxation after a step - strain experiment 

equal to zero, f the rate of change of the free energy and p the density. It can be seen that in 

the case of relaxation, the demand for nonnegative mechanical dissipation rate is equivalent 

to the nonpositive rate of free energy. This means that relaxation is associated with the 

release of free energy stored durind the jump. 

Investigations concerning the energy storage during harmonic excitations [9] or arbitrary 

deformation histories [15] demand that the relaxation function should be a positive definite 

function. This means in detail [15] that 

- G(t) > 0 for all t and 

- G(t) is monotonic nonincreasing. 

If Eq. (5) is to be analyzed for thermodynamic compatibility, we must demand that both 

terms of the relaxation function, the power law term and the GMLF term, respond to these 

restrictions. For the power law term follows: ~ > 0 and a - fl _< 0. For the GMLF can be 

deduced (without proof) from the results of monotonicity of MLF [14,16] and on the basis of 

Eqs. (A6) and (A7) that this function is noninereasing if G o - 0, 2 > 0 andfl >_ a > 0. 

For the relaxation function follows: 

G O >-0, A>O, fl>_ct>O (11) 

The analysis of Eq. (9) is more complicated. For the Maxwellian part of this equation the 

conditions (11) are valid. The second part of Eq. (9) is a nondecreasing function. Sooit is 

obvious that Eq. (9) violates the second law of thermodynamics for the parameter combina- 

tion (11). This fact is also displayed in Fig. 3. In the long time range we have the following 

asympthodic behaviour confirming the violation. 



326 

P ( v )  -# H 1 )  -~  
gss " g® = ~ x g= - -  x (12) 

r (  1-/~ ) r (  1 - a  ) 

From this equation it is seen that only the parameter combination a = fl leads to a behavi- 

our not violating the thermodynamic constraints. Under these more restrictive conditions, 

the relaxation function of the fractional standard solid model obeys Eq. (13). 

gss" g= = (1 - g®) E , ( - x %  a=fl  (13) 

Does a fractional model with a g®- term exist which is compatible to thermodynamics under 

the same conditions like given by correlations (11)? The answer is yes if the t e rm/>  [1] is 

added on the right side in the FSS model. This equation reads then as follows: 

g + Da[g  ] = g®(1 + Da[ 1 ] ) + Dfl[ 1 ] (14) 

That means that a fractional derivative of strain must be added with an order of differentia- 

tion which corresponds to that of the stress derivative. The relaxation function belonging to 

Eq. (14), gss. (modified FSS model), and compatible with thermodynamics for the parame- 

ter combination (11) is the following Eq. (15): 

g ~ .  - g® = x~-,E..(-x ~) (15) 

By this, the thermodynamic constraints concerning the simplest rheological constitutive 

equations with more than one fractional derivative are given. While the determination of 

the constraints of the parameters Go, G® and his trivial the determination of constraints con- 

cerning the parameters a and fl is only possible on the basis of an analysis of GMLF. 

4. Simulation of material properties 

In this part of the paper the material behaviour given by different relaxation functions will 

be simulated and presented graphically. 
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Fig. 1: Dimensionless relaxation function, g, of the fractional Maxwell model vs. dimension 
less time for different orders, a,  of the stress derivative.The strain derivative is of 
orderfl  = 1 
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Fig.2: Dimensionless relaxation function, g, of the FMM vs. dimensionless time for different 
orders, a ,  of the stress derivative. The strain derivative is of order fl = 1/2. 
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The Fig.1 gives a clear impression about the type change of Eq. (5) from exponential 

(or=p= 1) to power law (0 < a~8 < 1). It is seen that in the case/~ = 1 (ordinary first order 

derivative of strain = strain rate) the variation of ~r influences on the short time behaviour 

as well as on the long time tail. The asympthodes obey the laws given in the figure. In this 

relation it should be mentioned that it is more accurate to speak of double power law. 

The Figure 2 corresponds to the case/~ < 1 for the fractional Maxwell model and shows a 

different behaviour. It is immediatly seen that in this case a influences only on the short time 

taile. At long times, the order of decay depends only on/~ as indicated by the formula in the 

figure. The double power law character is preserved. 
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Fig.3: Dimensionless relaxation function, g, of the fractional Standard Solid model vs. di - 
mensionless time for a = l / 2 ,  f l=l .  The dimensionless equilibrium modulus is g®=0.01. 

Figure 3 shows the relaxation function of the fractional standard solid model according to 

Eq. (9) for the parameters a =1 /2 ,  fl =1 and g® = 0.01. If this function is considered in the 

same scale as the other relaxation function in Figs. 1 and 2 no violation of monotonicity is 

seen. Only in a finer scale can be seen that approaching a distinct time the strong monoto- 

nic character is lost. This is the consequence of the not right choosen parameters a and fl 

and therefore the rate of mechanical energy dissipation is no longer positive in the merked 

time range. 
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5. Appendix 

5.1 Definition of fractional integration and differentiation 

The fractional integration can be introduced as follows 

X 

1 f f (Y)  dy l a [ f l  = r ( a )  ( x - y )  1-a 
a 

0 < a _ l  (A1)  

The definition of the operation of fractional differentiation, i. e., the inverse operation to the 
fractional integration, can be arrived at in several ways. Here we will follow Ref. [11] and 

expand the range of a to negative values and therefore introduce the operator of fractional 
differentiation D ~. 

D fl = i - / ~  = D n [ i n - / 3 [ f ] ]  n > f l > 0  (A2) 

D" is the usual n-th order derivative. An equivalent presentation of this formula is the follo- 
wing: 

x 

n-1 ( x - a )  k-/3 1 I f(n)(y) dy (A3) D f l [ f ]  = ~ f(k)(a ) + 
k;0 r (k- /~+l)  r ( n - f l )  ~ (x_y)~-(n-~)  

a 

In this equation g°) designates D" [ f ]. Throughout this paper a = 0 is used as the lower limit 
of integration 
In addition, it is necessary to introduce the Laplace transform L [ f ] = fo f  a fractional 
derivative. This is given by Eq. (A4) 

n-1 
L { D / ~ [ f ] }  = s/~ L{  f } -  ~ s k D-0-#) -k[ f ]  (A4)  

k=0  [ t = 0  

where s is the Laplace variable. 
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5.2 Definition of the Mittag.Leffier Function and Generalized Mittag-Leffier Function 

The Mittag-Leffier Function E (x) is a special case of Generalized Mittag-Leffier Function 

E.p (x) f o r t  = 1. 

From the following definition [14] 

E=a(~) = ~2 (x)k a ,Z>0 (AS) 
k=0 r(ak +/3) 

can be seen that only in the case x < 0 this function decreases monotonically. In this ease the 

following asympthodie expansions for large times can be given [10,14,16]: 

a -2 (A6) E ( - x )  = F ( 1 - a )  x a # l  

1 -1 v # a (A7) 
E,~.v ( - x )  ~ F ( v - a )  x 
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A SIMPLE ONE DIMENSIONAL MODEL SHOWING 

GLASS LIKE DYNAMICAL BEHAVIOR 

J.J. Brey and M.J. Ruiz-Montero 

Fisica Te6rica. Facultad de Fisica. Universidad de Sevilla 

41080 Sevilla. Spain 

1.  I n t r o d u c t i o n  

In this paper we discuss a simple model showing many of the 

dynamical properties of supercooled fluids and glasses near the glass 

transition. Such systems display a rich variety of phenomena [1,2], 

including strongly nonexponential decay in response to infinitesimal 

perturbations, nonlinear response to finite perturbations, 

non-Arrhenius temperature dependence of relaxation times, and 

hysteresis effects. It is also characteristic the cooling rate 

dependence of low temperature properties. 

In spite of the great deal of work carried out during the last 

years, the above properties are far from being well understood, and 

little is known about the physical processes governing the behavior of 

glasses and supercooled fluids. Lacking a solid general formalism, it 

seems worth while to study simple specific models that mimic the 

dynamics of real fluids near the glass transition. An interesting goal 

is to identify what is required for a model to describe glassy 

dynamical properties. 

Our model is based in the one introduced by Bell [3] to describe 

some of the equilibrium properties of liquid water. It is a lattice 

model for which only the statics was specified. Very recently [4], we 

have defined a dynamics for it, in terms of a master equation with 

transition probabilities obeying detailed balance. The equilibrium 

properties of the model can be computed analytically quite easily, 

while the kinetic ones are provided with limited effort by Monte Carlo 

simulation. In spite of its simplicity, we will see that the model 

presents many of the characteristic properties of supercooled liquids 

and glasses. 
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2.1 Statics 

We consider a one dimensional lattice of N equally spaced sites. 

Each site can be either occupied by a particle or it can be empty. 

The number of particles in the lattice is M. There are two kinds of 

interactions among particles. Two nearest neighbor particles interact 

with an energy -c. Two particles separated by a single empty lattice 

site may be bonded with energy -(8+~). Both, £ and ~ are taken to be 

positive. 

In order to visualize the states of the system it is useful to 

introduce the following representation [3]. A site between two bonded 

particles will be considered as occupied by a bond (b). The other 

empty sites are considered as holes (h). Representing the particles by 

m, a possible configuration of the system is 

...h m m h h m b m h h m b m h... 

-c -(c*o) -(c+o) 

We have also indicated the interaction energies. Assuming periodic 

boundary conditions, the energy of a given state can be expressed as 

E(N,M,Z,B)= -(M-Z) 8 - B 

(I) 

where B is the number of bonds and 2Z is the number of particle-holes 

contacts. 

The equilibrium thermodynamical properties of the system can be 

obtained in different ways, for instance by constructing the 

isothermal-isobaric partition function [3,4], or by using the transfer 

matrix method [3]. In the limit of M going to infinity, one gets the 

following expression for the Gibbs free energy G: 

J 
G = MksT in 

ADJ-t+A+ (J-i) -I 

(2) 

with A=e ~8, D=e ~, J=e ~p* and ~=(ksT) -I. Here k s is the Boltzmann 

constant, p is the pressure, i is the distance between neighboring 

sites, and T is the temperature. 
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All the equilibrium properties can now be derived from Eq. (2). 

Their expressions will not be given here. It must be noticed that, 

since we are dealing with a one-dimensional model with short range 

interactions the system does not present any equilibrium phase 

transition. 

The transfer matrix method also allows the calculation of 

equilibrium correlations. For instance, we can define a site variable 

by: 
J 

~j=0 if site j is occupied by a bond or a hole 

=i if site j is occupied by a particle 
J 

Then, the following expression is obtained for the correlation 

function of a [3,5]: 

c -  <(~j-<cxj>) (,',,j+l-<~.l+,>)> 

jl N (K*)I, - ---g-- 

(3) 
where the angular brackets denote equilibrium average, and K is the 

transfer matrix 

K= 

XA X I/z (XAD) 1/2 / 
X x/2 1 0 

(XAD) I/z 0 0 

with 

(4) 

j2 (j-l) 
X= 

A (J-l) (J+D) -J 

(5) 

AS an example, we have plotted in Figures i and 2 the correlation 

functions for k T=400 and k T=200, respectively. In both cases we have 

taken c=200, ~=500 and N/M=2. These are also the values used in the 

Monte Carlo simulation to be presented later on. As expected, the 

correlation length is seen to increase as the temperature decreases. 

Of course, it tends to infinity as T goes to zero, reflecting the'fact 

that the system is reaching a perfect crystalline structure. For all 

the conditions considered in our simulation the correlation length is 

small as compared with the length of the system. 
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Fig. 1. Correlation function for ksT=400, e=200, ~=500, and N/H=2. ~11 

the energies are measured in arbitrary units. 
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Fig. 2. The same as Fig. I, but ksT=200. 
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The dynamics of the system is assumed to be governed by a master 

equation for the probability P(~,t) of finding the system in a given 

configuration a at time t: 

0 £ P(a, t)= W (a'~a) P(a',t) - W(a~a')P(a,t)] 

(6) 

where W(~') is the transition rate from the state ~ to the state ~', 

and the sum extends over all the possible states of the lattice. 

We consider a fixed number of both particles and sites. The 

allowed transitions consist in the creation or destruction of a bond, 

and in the motion of a particle to a next empty site. A particle can 

not jump to a site that is occupied by a bond. Before jumping, the 

bond must be destroyed. Finally, two particles can form a bond only if 

there is a hole between them. For the allowed transitions the specific 

form chosen for the transition rate is 

W(Kg&')= ~ i-tanh 

(7) 

Here AE=E(~')-E(~), and r is a constant fixing the natural time 
o 

unit of our system. The transition probabilities defined by Eq. (7) 

verify the detailed balance condition [6]. Besides, the associated 

Markov process is irreducible, in the sense that every state can be 

reached from every other state. Therefore [7], any arbitrary initial 

distribution of configurations will approach in time the canonical 

equilibrium distribution 

P (1) ~ e -~E (~) 

(8) 
with E(~) given by Eq. (1). 

The mechanism for relaxation of the model at low temperatures is 

easily understood. At such temperatures there are small populations of 

holes and partlcle-particle contacts. In order to create a new bond, 

two particles must be previously separated by a hole. For most of the 

configurations, this implies the migration of holes and particles 



336 

through the system. In this process, bonds must be destroyed, and 

because bonds are energetically favored, the relaxation of the system 

is hindered. We want to point out that we will see that the above 

mechanism does not reduce to simple diffusion, leading to an Arrhenius 

temperature dependence of the average relaxation time, as it is the 

case for the one-spln facilitated model [8] introduced by Fredrickson 

and Andersen [9,10]. 

3. Dynamica l  propert ies  

We have investigated some dynamical properties of the model 

through Monte Carlo simulations in a lattice of 200 sites and i00 

particles. For all the temperatures and times relevant in this study 

we have checked that the results do not show significant finite size 

effects. This has been done by comparing with the exact analytical 

expressions for the equilibrium properties ( valid in the limit of an 

infinite system), and also by changing the size of the system in the 

simulation. The details of the algorithm have been given elsewhere 

[4], and they will not be reproduced here. 

3.1 Linear resoonse 

The linear response in energy to an infinitesimal long wavelength 

perturbation can be characterized by the function 

#(t)= <E (t) E (0) >-<E>2 

<E~>_<E>2 

(9) 

that is defined such that #(0)=i. The behavior of #(t) has been 

investigated in the range 200<kT<700, and in all the cases a 

monotonous decay towards zero has been obtained. Fig. 3 shows the 

results for k T=280. 
B 

The simulation data where fitted to a Kohlrausch-Williams-Watts 

(KWW) expression 
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t ] exp [ -  . 

(10) 
where • and ~ are adjustable parameters. The fit was carried out by 

w 

considering only the data in the interval 0.03~ #(t) s0.3. The solid 

line in Fig. 3 is the best KWW fit for that case, and it corresponds 

to r =43.3 and ~=0.37. This value of ¥ indicates a broad spectrum of 
w 

relaxation times, far from a pure exponential behavior. Besides, 7 is 

seen to decrease as the temperature is lowered. 

, - . . ,  

• 0 

0 

0 500 1000 1500 

Fig.3. Linear response function for kBT=280. The parameters of the 

model are the same as in Fig. I. The solid line is the best KWW fit. 

As said in the Introduction, nonexponential linear relaxation 

functions are characteristic of viscous fluids and glasses. Also , a 

peculiarity of these systems is the temperature dependence of ~, that 

is usually referred to as the lack of "thermorheologlcal simplicity", 

to indicate that the temperature dependence of # can not be reduced to 

a single time scaling. 

The time r also depends on the temperature, and so does the 
w 

average relaxation time defined by 
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The results for 

Vogel-Fulcher equation 

W 

-r- = [o dt #(t) 

-q-can be accurately fitted 

(11) 

[11] with the 

E 

I °I -r- = exp T-T 
O 

(12) 

in all the temperature range considered. The values obtained for the 

adjustable parameters are Eo=i073 and ksTo=78. It follows that the 

apparent activation energy is clearly a decreasing function of the 

temperature. This behavior also agrees qualitatively with the one 

observed in viscous fluids. On the other hand, the Adam-Gibbs 

r = exp T S ' 
c 

expression 

(z3) 

where S is the equilibrium configurational entropy, is not verified 
c 

by our model. This is not surprising, since the entropy is determined 

by the statics of the model, while the average relaxation time depends 

on the chosen dynamics. When using a master equation description, 

there are many possible dynamics that are compatible with a given 

statics, even though detailed balance is required [6]. 

3.2 Nonlinear resDonse 

The time-dependent response of the model following an 

instantaneous quench has also been investigated. We have performed 

such experiments starting from the configuration with a hole between 

every two particles, i.e., 

...m h m h m h m h m h m h... 

It formally corresponds to the equilibrium state of the system at 

~--~ o 

After quenching to a finite temperature, we have monitored the 

energy as a function of time, and obtained the (nonlinear) relaxation 

function 
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n 

¢(t)= I- E(t) 
<E> 

T 

(14) 

where <E> T is the equilibrium average energy at the final temperature 

T, and E is the (nonequilibrium) average energy at time t. It is 

@(0)=i, and ~(®)=0. 

At all the quenching temperatures investigated (50 sk T ~i000), 
B 

@(t) decays to zero for sufficiently long times. Nevertheless, for 

high values of T (kBT>IS0) the decay is not monotonous. An example, 

corresponding to ksT=1000, is shown in figure 4. There, it is seen 

that the system overshoots the equilibrium value, and ¢(t) becomes 

negative. The final relaxation takes place through values of the 

average energy that are smaller than the equilibrium value 

corresponding to the final temperature. 
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Fig. 4. Nonlinear response function for ksT=lO00, corresponding to an 

instantaneous quench from 8=-®. 

For low temperature quenches (kBT<I50), the decay is 

monotonous, although highly nonexponential. We have found [ii] that 

the data can be again well fitted with a KWW expression 
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t )7 '  
@(t) = exp - -~ 

(15) 

Figure 5 shows the simulation data for kaT=120 and the fit with 

r =5.3 and 7'=0.17. A similar result was found by Fredrickson and 
q 

Brawer [13] for the facilitated Ising model. In reference [ii] the 

relation between the linear and nonlinear relaxations in our model is 

analyzed in terms of the Narayanaswamy theory [14,1]. 
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CW 

0 

' I ' f 

i i ~ I i J , l I J i i r 

5000 104 ~ 1.5x 104 

Fig.5. The same as Fig. 4, but for kBT=I20. The solid line is the best 

KTdWfit. 

3.3 Continuous Qoolinu 

In another set of experiments, we have cooled the system with a 

constant cooling rate 

d 
r= ~ (ksT) , 

(16) 
starting from an equilibrium distribution of states. We assumed that 
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the master equation (6) also holds when dealing with a time dependent 

temperature. 

Fig. 6 shows the evolution of the average energy per particle for 

r=l, 0.1 and 0.01. Also plotted is the equilibrium value of the 

average energy as a function of the temperature. At high temperatures, 

the evolution of the energy follows the equilibrium curve, but the 

energy departs from its equilibrium value when sufficiently low 

temperatures are reached. The temperature at which the departure takes 

place decreases as the cooling rate decreases. For very low 

temperatures the energy reaches a value that is practically constant, 

and it is not affected by later cooling. The difference between this 

value of the energy and the energy of the ground state is the so 

called residual energy, and it is a function of the cooling rate. More 

precisely, the residual energy becomes smaller as the cooling rate r 

is decreased. 
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Fig. 6. Ewolution of the average energy per particle for constant 

cooling rates r=l, 0.1, 0.01. The circles are the equilibrium values 

of the energy. 

From the above discussion it follows that our model presents a 

phenomenon that is similar to the laboratory glass transition observed 

in real glasses [2]. Since our model has no thermodynamical or kinetic 
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phase transition, it follows that the existence of an underlying 

transition is not a necessary condition for a system to show glass 

like behavior. This is in agreement with the general ideas expressed 

by Fredrickson [2], following the discussion of several models 

proposed for the liquid-glass transition. 

An interesting problem that has raised some discussion in the 

last years is the functional dependence of the residual properties on 

the cooling rate [15,16], in the limit of very small cooling rates. 

The residual energy of our model can be fitted quite well to the two 

most used laws, namely a logarithmic and a power law dependence [4], 

in certain ranges of the cooling rates. No clear conclusion can be 

reached about which of the two laws describes best the dependence of 

the residual energy on the cooling rate. 

4 .  Discussion 

The one dimensional bonded fluid discussed in this paper exhibits 

many of the kinetic properties that are characteristic of real 

supercooled fluids and glasses. In particular, we have investigated 

the linear response, the nonlinear response to an instantaneous 

quench, and the behavior under continuous cooling. In spite of its 

simplicity, that allows rather efficient computer simulations, the 

relaxation of the model turns out to be quite complex. 

We believe that this kind of models can be very useful to 

investigate the mechanisms leading to glassy behavior, and also to 

shed light on the way of deriving macroscopic equations for 

supercooled fluids and glasses, starting from a microscopic 

description. 
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STATISTICAL CONFORMATION OF A POLYMER IN A NEMATIC 

MEDIUM UNDER A SHEAR FLOW USING THE ROUSE MODEL 

Y. Thiriet*, R. Hocquart*, F. Lequeux* and J.F. Palierne + 

*Laboratoire de Spectrom~trie et d'Imagerie Ultrasonores, 

Unit~ de Recherche Associ~e au CNRS n°851, Universit~ Louis Pasteur, 

4, rue Blaise Pascal, 67070 Strasbourg Cedex, France. 

÷Institut Charles Sadron, C.R.M.-E.A.H.P., 

6, rue Boussingault, 67083 Strasbourg Cedex. 

I. INTRODUCTION 

Several authors have investigated the conformation and the behaviour of 

flexible polymers in dilute solution in a nematic matrix [I-4] or in the isotropic 

phase of a nematic liquid [5,6]. These systems exhibit some peculiar rheological 

properties, particularly the effective viscosity of the nematics which is modified 

by the presence of polymer chains. Such a modification due to the geometrical 

anisotropy of the macromolecules at rest or under the action of an hydrodynamic 

field has been considered theoretically by Brochard [7]. 

In the following approach, we have assumed that the internal elasticity of 

the polymers is anisotropic owing to the coupling of the order parameter which is a 

feature of the nematic state. The model proposed is a generalisation of Brochard's 

model. 

The statistical behaviour of a chain under the influence of a shear flow is 

studied in the frame of a Rouse model. We have established a stochastic LANGEVIN 

equation in order to calculate the mean square distances along the chain as well as 

the maximal stretching of the polymer as a function of the orientation of the 

director with respect to the flow field. 

The case of an isotropic matrix is also considered as a particular case of 

the former one. 

II. DESCRIPTION OF THE MODEL AND THE LANGEVIN EQUATION 

We assume that the polymer chains are dilute in a nematic matrix. This 

solution is submitted to a simple shear flow whose velocity is Z = (gy,O,O) where g 

is the shear rate and the nematic director ~ = (cosa, sina, O).(See fig. I) 



3 4 5  

Fig. I 

X 

Let K(s,t) be the position of the chain at time 

curvilinear coordinate on the chain at rest (0 < s < h). 

The chain is considered as an elastic spring and the 

given by the relation : 

T = k I ~' ~ +k 2 ~.(n ~zE/ 
- ~s -T t- ~-V) 

t, s being the mean 

force per s unit is 

(1) 

where k~ and k z are two elastic constants : the first one is the classical constant 

while the second represents the anisotropic coupling constant with the order 

parameter. 

Note that k~ must be negative for a nematic polymer and k, + kz > 0 in order 

to insure the stability of the chain. 

The position ~ obeys the general Langevin equation : 

-( -D . r  + T + A = O  (2) 

where ~ is the flow rate tensor which in our case writes Dxv = g, ~ is the friction 

coefficient, and A a random force acting on the rest unit of length which satisfies 

the autocorrelation function : 

<At(s,t) Aj(s',t')> = A26tj 6(s-s') 5(t-t') (3) 

The Langevin equation projected on the orthogonal axes 0-~, 0--~, O~ gives 

following system of equations : 

gYcos'~J+k~- V +k,[~qTc. os (~-V) + ~ 7sin2(~) +A, 0 -~ - ~ gXsin2~ - * = 

a[~ t l a'Y [~ 6'X ~'Y n' ] -~ + gXsinZ~ + ~- ~s2Sl • gYsin2@J+kt- ~ +k z -~sin2(a-%o) + -  " (a-%o) +A v = 0 

~[~] ~2 Z 
-~ + k~ ~ + A z = 0 

the 
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In the following development, we are especially interested by the stationary 

movement (steady state). 

A standard way of solving such a system of equations is to apply the double 

Fourier transform ~(p,v) of the vector ~(s,t). We have : 

or inversely : 

+® L 

- -  dt ds E(p,v) = ~(s,t) e J'~"t cos P L 

--~ 0 

eo +¢o 

r(s t) r(O,t) 2 p~= I Ms , = ~ + - r(p,v)e -J2~vt cos p-- dv 
L L ~ L 

--00 

One can see that in such a transformation the condition at both ends of 

chain, i.e.(~/bs)s=O,L=O, are automatically satisfied at any time. 

In the same way, the relation (3) becomes : 

the 

L 
<Ai(p,v) Aj(q,v')> = A 2 ~Sij ~pq ~(V+V') 

and the movement equations yield : 

[j2~v - ~ g sin2%~ + w, + ~2cos 2 (a-%o)]X + [-g cosZ%o + 2Ltozsin2(a-%o)]Y = Ax/~ 

[j21~v + L g sin2%o + ~, + ~zsin' (a-%o)]Y + [g sin2%o + ~2sin2f(~-%o)]X = Ay/~ 

[ j 2~v  + w, ]Z = Az/~ 

k~ pZ~2 k2 pZ~2 
~, = - - ~  > 0 w 2 - - -  < 0 

L z ~ L 2 

III. EXPRESSIONS OF SOME MEAN SQUARE DISTANCES 

In order to calculate the mean square distances along the chain, one has to 

determine at first the expression of the autocorrelation function of K(s,t). For 

instance, after Fourier transforms we get : 
L 

<X(p,t)X (q,t)> = A z ~ ~pq I(p) 

or reciprocally : 

A z Ms ~s' X z (O,t) 
<X(s,t) X(s',t)> = ~ cos p-~ cos p-~ I(p) + 52 

P 
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1 w~ sin' (a-~) +~gsin2a 
where ICp) = - -  + 

2wt +w2 ~t (w1 +~z ) +½~ gsin2a 

g' cos' a+w~-~t g [sin2a+sin2 (a-~o) ] + 
(2w I +~, ) [w t (to t +w, ) +~ ~ gs in2a]  

and after straightforward calculation we have : 

, ,, cos p-~ - cos p-~ ) I (p) <(X(s,t) - X(s' t))z> = ~;zL 

p=l 

,. ,.). 
Let us call : C x = cos p-~- cos p-~ ICp) 

p=l 

This expression can be split up in a sum of series as follows : 

[ At Az As 
c~ = ~ -  + ~ + p'  C p ' - p ' )  

where 

At = llk4 

A, = -kssin'(a-%o)/ktk , + kt/kzk 4 

A s = gsin2%o/2ktk , + ksg[sin2a + sin2(a-%o)]/2ktkzk 4 

A 4 = gZcos'~ I ktkzk4 

p' = ksg sin2a /2ktk , 

k t = k1~t'/~L' k, = (kt+k2)zZ/~L z ks=-k, ltZ/~L z 

Another expansion of C x can be useful especially 

expansion has the following form : 

A4 
+ p4(p2_~2) ) (C°S 

~S ~S'~ z 
P7- c o ~  P7 ) 

k 4 = (2kt+k2)~Z/~L 2. 

if ~ # 0 and a E ]0,~/2[. 

where 

cx : V + p-V + ~ cos P 7  - cos P 7  ) 

sin2%o 
A 5 = 1/k 4 

ks s i n2a  

2gcos2~ 
A s = 

ksk4sin2a 

sin2a + sin2(a-~) 4ktkzcosZ%o 

k 4 s in2a  k~ )'4 sinZ 2a 

k 3 k t sin2~ 
A~ = - sin' Ca-~) + + 

ktk2 kzk4 kssin2a 

sin2a + sin2(a-~) 4ktk2cos2~ + + 
k 4 s in2a  k~ X4 sin"  2a 

and after the calculation of the series, we obtain : 

C x = AsF + AsG + AvH 

where : 

F : C~12)Ix-x'l 

G = (~14)(x+x')Cx-x')' -(ll8) Cx'-x") 2 - (~ll2) Ix-x'l 3 

This 
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H = (~/2~)[(cosx-cosx') z cotg p~ + (sinx+sinx')(cosx-cosx') + sin[x-x'[] 

x = ~s/L x' = ~s'/L 

In the case ~ ~ o and a ~ ]0,-z/2[, we get the corresponding expansion by 

changing p in j p. 

To determine the expression of the other coordinate mean square distances, we 

follow the same procedure and we get : 

<cYCs,t  YCs,t  ', cos Pb cos ) Jcp  c, 

Cy is obtained from C x by changing %0 in %0 + ~/2 

A 2 F A z a 

<{Z(s,t) - Z(s',t))z> = ~=L'A-~__ = 2~k----? [s-s'[ = ~ ]s-s'[ 

where a is the monomer length, using the wellknown relation for the Gaussian chain. 

In the direction 0z, the statistic is not perturbed. 

IV. STUDY OF THE CHAIN STATISTIC 

The behaviour of a 

consider now the static 

polymer in an isotropic and nematic phase. 

For this purpose, we have investigated the following cases : 

- isotropic matrix at rest 

- nematic matrix at rest 

- isotropic matrix in a shear flow 

- nematic matrix in a shear flow whose polarisation 

and ~ = ~/2. 

We first calculate the general expressions of the mean square 

p = 0. 

Under these conditions we have : 

~ (A3 A 4 Ax+A= ) I ~s ~s', z cx = pW + p-~ + p= cos p-~ - cos p-~ ) 

Cx = (A t+A z)F + A 3G + A 4E 

where 

E = ~[x-x']"/240 + ~2(xZ-x'=)2/24 - ~(x-x')Z(x+x')[(x+x') 2 + 2(xS+x'=)]148 

+ (xS-x'=)=(x=+x'=)/48 

chain depending on the medium in which it is dilute, we 

as well as the dynamical aspect of the statistics of the 

is such as a = O 

distances for 
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and <(X(s,t) - X(s',t))z> -- 
A2 2k I a 

_ _  - C x h~ 2 Cx 3L~ 

Finally the two interesting mean square distances may be written : 

<(X(s,t)-X(s',t))'> 2aL [ k I k a ] 

2aL [ gsin2%o kag ] 
+ - -  + - -  (sin2~ + sin2(a-%o)) G 

3~ 2 2k z 2k, k 4 

2aL g'cos2~ 
+ - -  E 

3~z ~k4 

<(y(s,t)_Y(s,,t)),, 2aL [ ka ] . . . . .  cosZ(~-~) F 
3~' k2 kz 

2aL [ gsin2~ k3g 

3z 2 [ 2k 2 2k2k 4 
(sin2~ - sin2(a-~))] 

2aL g2sin2~ 
+ E 

3~ z k2k 4 

The calculation of the extremum of the mean square distances for ~ = 0 and 

a = ~/2 is easy. As a matter of fact, the genera] forms of the mean square 

distances are : 

<(X(s,t) - X(s',t))2> = P + Q sin 2~ + R cosZ? 

<(Y(s,t) - Y(s',t))2> = P - Q sin 2%0 + R sin2~. 

The extremum of these functions are such as : 

2Q 
tg2~ = -- 

R 

and in this case we obtain the reduced expressions ~ and 7 such as : 

= <(X(s,t)- X(s',t))z> = P + RI2( 1 + /1+(2Q/R) 2 " ) 

? = <(YCs,t) - Y(s',t))2> = P + R/2( 1 - /I+(2Q/R) 2 " ) 

Note that P and R being always positive, the maximum of 

<(X(s,t) -X(s',t))2> 

corresponds to the minimum of 

<(Y(s,t) - Y(s',t))2>. 
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a) Case a = 0 

The coefficients of the sinusoidal functions are : 

2aL 2aL Gg 2aL gZE [ ~,sk4 F] 
PI = ~ F " Q~ - ; R 1 = 1 + 

3 ~2 ' 3uz )`4 3~2 )'2~'4 

and the angular position of the maximum of <(X(s,t) - X(s',t))2> is defined by : 

2Q, 2 )̀ 2 G 
tg 2%o~ = -- = 

{ ~'s )'4 

b) Case a = z / 2  

The c o e f f i c i e n t s  of  t h e  s i n u s o i d a l  f u n c t i o n s  a r e  : 

2aL k, 2aL )̀  I 2aL g2E [ )`3)`4 F] 
Pz = ~ -  F ; Q2 - Gg ; R 2 = 1 gZ 

3'~z ~2 3~:z )`z)`4 3~z k2)'4 

and the angular position of the minimum of <(X(s,t) - X(s',t))2> is defined by : 

2Q 2 2)`i G 
tg 2%0 2 - 

Eg ( 1 - ) ` 3  k4 F 1 R2 
gZ E] 

In order to determine 

following partition : 

the stretching along the chain, we have chosen the 

2L 
s = 0 , s' = L/3 ; s = L/3 , s' = -- ; s = 0 , s' = L 

3 
Under these conditions we may calculate the corresponding functions G, F and 

L ~4 zz 53~e 
S -- 0 , s' = - -* G - F = -- E = 37 

3 33 .8 6 .80 

L 7~14 ~2 61,~6 
s = L/3 , s' = 2- -. G = ~ F = -- E = 

3 34 .8 6 36 .80 

S=0 , S' =L 

~4 ~2 ~6 
G = - -  F = -- E - 

24 2 240 

Moreover the functions G, F, and E are symmetric with respect to the middle 

of the chain 

G(s,s') = G(L-s, L-s') ; F(s,s') = F(L-s, L-s') ; E(s,s') = E(L-s, L-s') 

i) Isotropic matrix at rest 

According to Brochard, k z is a function of the order parameter and therefore 

in the isotropic phase k z = 0. 
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We put now kz = g = ~ = 0 in the general expressions of the mean square 

distances and note that they are all equal to aL/9 in the cases (s = 0, s' = L/3) 

and (s = L/3, s' = 25/3), while the end to end mean square distance is three times 

the preceding value. These results show that the stretching is homogeneous along 

the chain. 

2) Nematic matrix at rest 

We put now g = a = %o = 0 and k s # 0. 

The expression of the mean square distances are then : 

2aL )'t 2aL 
g=3-~ -F-),~ ;Y= 3-~r 

- For s = 0, s' = L/3 : 

aL )'I aL 
~=---- ;Y=Z- 

9 ),2 9 

- For s = L/3, s' = 2L/3 : 

aL )'I aL 
~=----; Y=Z=-- 

9 )`2 9 

- For s = 0, s' = L 

aL )'I aL 
~=---- ; v=z- 

3 k 2 3 

The stretching along the chain is homogeneous and the 

chain in as stretched as the other part of the chain. 

central part of the 

3) Isotropic matrix in a shear flow 

In the dynamic regime g # 0, but the order parameter is null and k 2 

This condition implies )'i = )̀ 2 = )`4/2 and )'s = 0 and we get : 

2aL aL Gg aL Eg 2 2G), I 
= • - ; R- z ; tg2%o- 

P 3-~ F , Q 3~z )'I 3~ )'t Eg 

- For s = 0, s' = 5/3 

l aL aL 

?] = -9-+--'9 
1 _+ / 1  + tg22~o 

160.3  ° k~ 

20.34 k l 
tg2~ . . . .  

53 .~2 g 

=0. 
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- For s = L/3, s' = 2L/3 

I aL aL 

Y 9 9 

61114 gZ ( 

160.3 s )̀ ,= 
1 -+ J / 1  + t g ' 2 ~ ' )  

140.3 z )`1 
tg2%o . . . .  

61 .~z g 

- For s = 0, s' = L 

] aL aL 

Y 3 3 

20)`, 
tq2~ - 

~Zg 

480 )̀ ,2 1 -+ 4/I + tg=2~  

Contrary to the previous case, the stretching on the chain is not 

homogeneous, the center of the molecule being less compact than near the ends. 

Furthermore, we observe a variation of the angular position along the chain. 

4) Nematic matrix in a shear flow [8] : 

The velocity field can be parallel (e = 0) or orthogonal (~ = ~/2) to the 

director n. 

a) Case a = 0 

The expressions of the mean square distances yield : 

2aL 2aL Gg 2aL Eg 2 [ 
• - ; R,= --~ 

PI= 3-~ F , Q, 3~z )`4 3~2 )̀ 2)̀ 4 [ 

tg2~1= 
2G)`2 

ks X4 F ) 
gE 1 + g--y- 

- For (s = 0, s' = b/3) : 

)[] eL ab ks ( 53~4 gZ ) { 
=--+--.-- 1 + 

v 9 9 2)`, 4o.a 

40"3s )̀ s )`4)- * 20.34 _}'2 1 + g= 
tg2%= 53.------ £ • g 53.~ 4 

- For (s = L/3, s' = 2L/3) : 

][] aL aL is ( 61•4 g' ) ( 
=--+--.-- 1 + 

v 9 9 4 ; : 7  

1 -+ 

1 -+ 

)̀ a )̀ 4 F ) 
I+ g--F- E 

i + tg227~" ) 

I + tg 22~t ) 
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7.20.32 k 2 
tg2~1= 61.x2 g I +  

40.3 ~ k s), 4 ~'I  
61 .,if4 gZ ) 

- For s = 0, s' = L : 

)[] aL eL kS ( 
_ = + ~ , 

Y 3 3 2X 2 
o.)( ) 

1 + 1 -+ Yl + tg22~ 
120 ks X4 

20 k~ ( 1 + 120 ksX4 ) -* 
tg2@~- x2g ~4 gS 

Once more, the stretching along the chain is not homogeneous and the 

position from one part of the molecule to the other is not constant. 

angular 

b) Case a = n /2  

The e x p r e s s i o n s  of the  mean square  d i s t a n c e s  g ive  : 

2aL X, 2aL X z Gg 2aL Eg s [ k sk 4 F 
P2 = ; Qs = -- ; Rs = [ 1 g2 

3~ s ~ ~ )'s }'4 3~s )'2 }'4 E 

tg2~2= 
2GX, 

ks )'4 F 
Eg(l gS E ) 

- For s = O, s' = b/3 : 

_~] = aLk~ ab ks ( I - 
Y 9k z 9 2X s 

)( -) 
40.3 ~ ksk4 1 -+ Yl + tg s2%% 

20.34 
tg2~z= 53.'~2 

40.3~ ks X4 )-z x, i -  g, 
g 53 

- For s = L/3, s' = 2L/3 : 

_5[] = __aLk~ a5 ks ( 1 
Y 9k s 9 2X 2 

( ) 
2.70.3 s k z ( 

I tq2%% = 61"~ s g 

- For s = 0, s' = L : 

] [ ]  = aLk,_ a L _  __ . :ks ( 

Y 3 k 2 3 2 k~ 
~4 g2 1 

1- 12~ X~4] (1' V/l + tg'2'. ) 

2Ok, ( 120 k3k4 )-  
tg2~2 ~2g 1 ~4 gZ 

Same conclusion as for the case a = 0. 



354 

CONCLUSION 

In this study, we focused our attention on the internal statistic of a chain 

in a nematic phase. 

The stretching of different parts of similar chains submitted to a shear flow 

is not homogeneous and depends on the position of the part along the chain. 

In fact, the stretching of the macromolecule is more important in the middle 

than near the ends of the molecule. 

We note the same behaviour in an isotropic phase as was already mentioned by 

Rabin [9] for dilute solutions of polymers in an isotropic matrix, but in an 

elongational field. 

At constant shear rate, we observe that the stretching direction of similar 

portions of a chain depends of their localization on the chain and differs from the 

orientation of the end to end stretching. 

At last, the stretching direction as a function of the shear rate intensity 

is very different in an isotropic dilute solution compared to the one obtained in a 

nematic dilute solution. 

Figure. Principal results of the stretching orientation as a function 

of the shear rate for the end to end chain. 
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On the modelling of stationary heat transfer by the use of dissipative networks 

by Gerd BRUNK 

Rheological networks and electrical equivalent circuits are often applied to render a 

graphic access to the macroscopic constitutive description of physical systems.Thus we 

obtain some insight in the essential physical properties of basic conceptions used in 

constitutive theory and at the same time consistency with thermodynamical restric- 

tions as passivity is provided. Here we shall look at the idea of temperature in non- 

equilibrium systems as a generalisation of equilibrium temperature. For this purpose 

we connect the concept of contact temperature developped by MUSCHIK and 

coworkers /1/  with the idea of noise thermometry. By this way we can study the one- 

dimensional heat transfer which is involved in mechanical or electrical random 

processes as well between discrete systems as in continuous ones. We find - by the 

introduction of the fluctuation-dissipation theorem - as a consequence the (linear) 

FOURIER law of heat conduction and moreover an interpretation of contact tempera- 

ture in the case of onedimensional ¢nodelling of heat transfer by radiation. We realize 

how to model a thermal contact on mesoscopic level, we clear up the meaning of 

temperature in non-equilibrium and we show the non-equivalence of different 

contacting with respect "to temperature definition. Our starting point shall be the 

fluctuation-dlssipation-theorem for onedimensional systems as detected by NYQUIST 

/2/in 1928. This states the spectra of applied current j of a resistor or of force F of a 

dashpot to be 

i 1 4 - .  
I 
I 
I 
I 
I 
I 
I T 
t 

Fig 1.a: 

I 
tj 

R 

0 

uI 
o I T ! 

"1 
r I 

I , I  I I  

V 

F 

Fig. '.a dashpot 
Fig. 1. b 

Notations and equivalent circuit corresponding to NYQUIST's fluctuation- 
dissipation-theorem, eq. (1.1), and Fig. 1.b: Notations and rheological model 
concerning thermal force fluctuations, eq. (1.2). 
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o r  

Sjj(w) = 2 k T G  (1.1) 

SFF (~) = 2 kT r (1.2) 

resp. where G = 1/R means the conductance and r the damping coefficient (cf. figs. 1.a 

and 1.b). If we must take into account quantum mechanical effects the spectra must be 

corrected by the factor 

"h,,, (1.3) g('7) = 17/I ( e x p l ~ l - 1 ) ;  7/ := ~ -  

Generally we have in multidimensional systems 

equivalent applied current vector j / 3 / , / 4 /  

sjj (~) = 2 k¢ Yh(~). (2) 

Here is 

Yh := ~- (y + y+) (31 

the hermitean part of the conductivity matrix Y - see fig. 2 for the electrical case. 

the matrixvaiued spectrum of 

I 
I 
I 
I 
I 
I 
I T 

] 

I 
o l  
o2 I 

, , ,  k I 

_-!- I 
- I 

._i 

Fig. 2 

Fig. 2: Multipole black-box con- 
figuration corresponding to 
thermal current fluctuations, 
eq. (2). 

NYQUIST has deduced the equation (1.1) using an imaginary experiment sketched in 

fig. 3 and its generalisation 

Sjj(w) = 2 k T Y r  (~) '  Yr : = R e Y '  (4) 

- being a special case of eq. (2) - by the study of the system traced by fig. 4. 
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In both imaginary experiments two systems in thermal equilibrium T2=T 1 are 

connected by a well defined (electrical) contact. 

r J I - - -  
I ] ideal line [ 
I I I 
I I i 
I i I 
I RI=  Z i i R 2 = Z  
I 
I I I 
I I I 

. . . .  __I ..... L "1"2 

equilibrium ~ = T z Fig. 3 

Fig. 3: NYQUIST's first imaginary experiment for deducing the termal fluctuation 
spectrum of a pure ohmic resistor Z. 
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I 
I 
I 
I 
I 
I 

1 [ I I 
I I 

I I  I R2 I 
I I 

' I I 

I 
zll 

I 
I 

T1 = 1"2 Rg.4 

Fig 4: NYQUIST's second imaginary experiment for deducing the thermal noise of 
an arbitrary impedance Z 1 or admittance Y1 := l/Z1 " 



359 

Regarding these configurations we are suggested to ask what will happen in non- 

equilibrium. As the mathematical description of mechanical and electrical linear 

systems is largely analogous we confine us to the electrical case. The simplest configu- 

ration of two systems at different temperatures is presented in fig. 5. 

Zj, 

,lw 

noisq_ thermometer 

Gp-  0 Y2 

{T0) 
d h • 

e T2 

/ 
/ 

I 
t / 

Fig 5: Compound system of two admittances at different temperatures connected in 
parallel to define the contact temperature measured by a noise thermometer. 

Using eq. (4) we get from the description of stationary stochastic processes in linear 

circuits the power density spectrum 

I _ s2. .  151 ~ 2(ta) = IZt ]2 (Sjj Y2r jj Ylr ) 

Here means 

Z t 

= 2k  Iztl 2 YlrY2r(T1-T2) . (5) 

:= (Y1 + Y2 + Gp )-1 (6) 

the total impedance of the coupled system, Y1 and Y2 are the admittances of the parts, 

Gp is the conductivity of a thermometer system, T 1 and T 2 are the equilibrium 

temperatures of heating baths of the parts. 

The heat transfer described by eq. (5) shows the characteristic form of NEWTON's 

cooling laaw by the proportionality to T 2 - T 1 . The contact temperature of a non--  

equilibrium system is defined by the condition that the exchange between the thermo- 

meter being in equilibrium and the system in non-equilibrium over the contact 

vanishes if the equilibrium temperature of the thermometer equals the contact 
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temperature; thus the heating power 15 - absorbed by the thermometer must balance 

that one 15+ emitted. The corresponding spectra are 

15_ (to) = 2 k ]Zt[ 2 Gp(Ylr T 1 + Y2r T2) (7.1) 

and 15+ (to) = 2 k Iztl 2 Gp(Ylr + Y2r ) Cap Tp. (7.2) 

From this we deduce a mixing rule for the contact temperature of the compound 

system consisting of Y1 and Y2: 

T = Ylr TI + Y2rT2 (8) 

P Ylr + Y2r 

Another realisation of the contact between the thermometer and the compound system 

is the connecting in series of the thermometer resistor. From this we obtain another 

mixing rule 

T Zlr T1 + z2r T2 
= ( 9 )  

s Z1 r .+ Z2 r 

Generally the contact temperatures T and T do not correspond. The equality T = T p s p s 

holds if and only if Z 1 [ = [Z21 where Z 1 and Z 2 are the impedances, Z k = Yk 1 . 

V 
~ 

I 
I 'E 
I 
I 
I 
1_. 

1 

v ! 
1 

I " 
[ 

I 
} 

T3 
I _ 
! 

A B 

Fig.  6 

Fig 6: Two simple compound systems interacting electrically and thus effecting heat 
exchange by thermal fluctuations. 



361 

The next step to be executed is the contact between two compound systems, A and B 

of them being characterized by its contact temperature TpA and TpB - cf. fig. 6 for the 

simplest case. The corresponding spectrum of the heat exchange power is 

15A~ B = 2k IZtI 2 YArYBr(TpA- TpB) ' (10) 

reproducing NEWTON's cooling law with respect to the difference of the contact 

temperatures. 

From the treatment of discrete systems we shall pass to continuous one-dimensional 

ones in the usual way studying chainlike mechanical or electrical networks as damped 

m c m c m c 

Fig. 7: 

(m) r (m) T r (m) r 
: - -  - - -  

Fig.7 

Undamped and damped oscillator chain as models for fluctuating continuous 
mechanical systems. 

Fig. 8 

Fig. 8: Network modelling a line as example for a fluctuating continuous electrical 
system. 

oscillator chains - fig. 7 - or lines - fig. 8. As we analyze spectra we characterize the 

systems by its lengthwise impedance and its admittance across per unit length. Further 

we shall execute deductions only in terms of the electrical case because of the analogy 
of the mechanical one which exists here as well as for discrete systems. We shall 

compare current with force, voltage with velocity, capacity with mass, inductivity with 
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, ,  

i 
O - - - ~  

R 
u v  ;u -x-- 

R = rE  , G = g~: ~ := A x  F~g.9 

Fig 9: Circuit with applied noise voltage v and noise current j modelling a fluctua- 
ting element of line with length e ~ z3~ ---4 0. 

compliance and conductivity with damping. At first we look at an element of a line in 

local equilibrium - as sketched in fig. 9 - with lengthwise impedance R = re, 

admittance across G = ge and the LANGEVIN forces v (applied voltage) and j (current 

source) describing thermal noise. Regarding terms upto the linear order e = zLx of the 

length element we obtain the equations 

u 2 = u 1 - v - r e i  I (11.1) 

i 2 = i l + j - g e ( u  l - v )  (11.2) 

connecting the output quantities u2, i2 with the input quantities. According to the 

fluctuation - dissipation-theorem, eq. (4), the spectra of the sources are 

S (x,a) = e 2 k T ( x )  rr(W ) r r : = R e r  (12.1) 

and 

Sjj (x,to) = e 2 kT (x) gr(W) gr := Re g (12.2) 

For the determination of the correlation of the input and output quantities il, 2 and Ul, 2 
with the noise sources j and v we restrict us to the case of adaption, that means the 

line shall be closed at both ends by the wave impedance Z. Because of the linearity of 

the system we obtain il, 2 and ul, 2 by superposition of portions excited by the sources j 

and v and the remainder uncorrelated portions. From this consideration follow the 

cross spectra of the input quantities to be 
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and 

r 
I u r (13.1) S!,,(x,to) = -S v(a,~)/Z1 = e . 2 k T  

Here Z 1 
line. As we have claimed adaption we have 

S?. (x,w) = -S 1. grZ2 (13.2) lj uj(X'a)/Z1 = -e . 2 k T ~  . 

and Z 2 are the impedances of the input side and the output side resp. of the 

Z 1 = Z 2 = Z : = ~ g - .  (14) 

By the limit e ----4 0 we obtain the coupled differential equations of the spectra: 

= - ( r *  S + r  Ox Suu ul Siu) (15.1) 

a s sll = - (g* Sin + g Sui) (15.2) 

O x Sul = - (g* Sun + r Sii ) + kT (Y* r r + Z gr) (15.3) 

a xSiu = - ( g S u n + r * S i i  ) + k T ( Z * g r  + Yrr) (15.4) 

The symbol (.)* means the complex conjugate. Y := 1/Z = q ~  

From the last two eqs. follows the differential equation for the transmitted power per 

frequency interval 

O x t 5 (x,to) = ~ Ox(Siu + Sui ) = gr(kTZr - Suu ) + r r (kWY r - Sil ) (16) 

The condition eq. (14) seems at the first glance fairly restrictive, but it is correct not 

only for the infinite long line, but approcimately also if the length of the line exceeds 

sufficiently the decay length. Therefore the eqs. (15) and (16) retain their significance 

in this case. Now we may ask for the relation between the system temperature T(x) - 

which equals the temperature of a local real or imaginary heating bath in equilibrium - 

and the contact temperature as defined above and further for the relation between 

power transmitted and the temperature field. For noise thermometers we use as before 

pure ohmic resistors connected in parallel (conductivity G --~ 0) or in series 
P 

(resistance R s ~ 0) proportioned in such a way that they do not influence the trans- 

mission. From the balance of absorbed and emitted power we obtain the temperature 

2 kTp S ]Y1 + Y2 12 = ( 1 7 . 1 )  
uu Ylr ~ Y2r 
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measured at the resistor connected in parallel and the other one 

2kW = S.. IZI+ Z21 
s u Zlr + Z2r 

(1~.2) 

As we have adaption, eq. (14), it follows 

kTp = Sun/Zr and kTs ---- Sli/Yr " (18) 

If we impose the condition Oxq = 0 of stationary "heat conduction" in each frequency 

intervall we find the relation 

Ox(S~. + s~) = 0 (19) 

and from eq. (16) we get 

g r ( k T Z  r - S u u  ) + r r ( k T Y  r - S S )  = 0 . (20) 

Because gr > 0 and r r > 0 we deduce from eq. (19) 

kT = Suu/Zr = Sil/Yr (21) 

If we compare this result with eq. (18) we see that the contact temperatures T and T p s 
equal the local system temperature. Inserting this in eqs. (15.1) and (15.2) yields for 

the transmitted power per frequency interval the expression 

15(x,w) := } (Sui + Siu ) = - A(~) 8xT (22) 

with the heat conductivity per frequency interval being 

1 
2~(~) := k g~lrl + hlgl Re [rg,]-~ 

girr  + r ig r 
1 

= ~ g i l r l  + r i lg l  [ r rg  r + rig i + I r l l g l  ]5 

y ~- girr  + r igr  Ir l  Igl 
(23) 

Thus we have indeed a FOUgIEI~ law for the heat transfer wherein the heat 

conductivity is defined by line properties. 

There is quite different situation if we impose by means of heating baths an arbitrary 

temperature distribution T(x) on the line and also arbitrary tempertures T 1 and T 2 on 

the load impedances at the boundaries x=0 and x=L Then we have generally no 
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stationarity, eq. (19) does not hold. The current and the voltage can be represented by 

superposition of portions due to the currents applied at the boundary loads (]I and j2 ) 

and to that ones within the line itself by thermal fluctuations. As these excitations ar 

uncorrelated the spectra can be superposed, too. By example we have 

Suu(X.,.) = s~uu(x,,,) + s2uu(x.,.) (241 

where the first and the second term are due to the excitations at ~ < x and [ > x 

resp. As we use adapted loads at the boundaries eq. (14) holds and it follows from 

al (x ,~,)  = z ~I ( x , ~ ) ,  

that the relations 

S ~ (x,,,) = IZl 2 u 

and 

s 2 (..,,,) = IZl  2 
u 

are valid. (If we keep by 

eq. (25), are due to only 

equation 

Suu(X,,, ) = IZl 2 S~ (x,~).  

a2 (x,~,)  = - z ~ ( x , ~ )  

S 1 u (~') 
(25) 

S 1 (x,w) 
ii 

an imaginary experiment the line at T=0 the spectra, 

the influence of the boundaries.) Therefore we get the 

(26) 

By insertion of eq. (26) in eq. (18.1) we deduce looking at eq. (18.2) 

kT = Suu/Zr = S~lZl2/Z = Sii/Yr = kT =: k@ (27) 
p s 

The both contact temperatures conincide and are different from the system 

temperature, naturally also in the special case T(x) = 0. Because the statement of 

eq. (27) is formally the same as that one of eq. (21) we have the same consequence, 

that is FOURIERIs law 

P(x,,o) = - ,~(~) a e (28) 

with )~(w) according to eq. (23), but with the contact temperature ~ unequal to the 

temperature T imposed by the heating bath. As all the calculations hold by analogy as 

well for the mechanical as for the electrical case we have found at the same time a 

mechanical model of heat conduction and an one-dimensional model of heat transfer by 

radiation in a dissipative medium if we take account the quantum correction, eq. (1.3). 

In the non-dissipative case the definition of "heat conductivity", eq. (23), is impossible 
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and we have no temperature field @(x); at the same time the so-called stationarity 
condition, eq. (19), is identically fulfilled. 
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THERMOMECHANICS OF POROUS MEDIA FILLED WITH A FLUID 
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ul. Miel~y~skiego 27, 61-725 Pozna~ 

Porous materials make their appearance in a wide variety of settin- 

gs, natural and artificial, and in diverse technological applications. 

As a consequence a number o9 problems arise dealing, among others, ~rith 

statics and strength, fluid flow and heat conduction, and the dynamics 

of such materials [10], and in the area o£ [81 exploration geophysics 

the steadily growing literature bearing witness to the importance of 

the subject. 

For propagation of stress-waves in a fluid-saturated porous medium 

the basic formulation is due to Blot [I], whose model consisted of an 

elastic matrix permeated by a network of interconnected spaces filled 

with liquid. An account of further researches based on Blot's theory 

is given in [5] ,Blot subsequently extended his formulation to include 

more general response of the solid phase [2]. 

In the author's opinion, the equations of motion 9ormulated by Biot 

give some results contradicting each other as far as their physical in- 

terpretation is concerned. A new system of equations being different 

from that proposed by Blot was obtained by the author in 1977 on the 

basis 09 general principles o9 continuum mechanics [4]. ~"ne purpose 

09 this study is to set the complete system of equations basing our 

considerations on the non-equilibrium thermodynamics. Earlier attemp- 

ts along these lines ~ere made by Zolotarev [9] as well by Deresie~ricz 

and Pecker [3]. Zolotarev confined himself to media forwhich the com- 

pressibility 09 the interstitial phase is much smaller than that of the 

skeleton, in addition to which dynamic coupling between the phases and 

heat diffusion within each phase were neglected. 

The thermo-mechanical coupling in the poroelastic medium turns out 

to be o£ much greater complexity than that in the classical case of an 

impermeable elastic solid, since besides thermal and mechanical inter- 

action within each phase, thermal and mechanical coupling occurs bet- 
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ween the phases. Thus, a mechanical or thermal change in one phase re- 

sults in mechanical and thermal changes throughout the aggregate. 

Deresiewicz and Pecker Followed the equations o9 motion proposed by 

Biot [I], took the two phases to be at different temperatures at every 

point of the medium and next postulated local costitutive relations wi- 

thout justifying them. In order to interpret the coefficients in their 

relations they re£erred to Onsager's theory. In this paper ~e con£ine 

ourselves to the same temperatures throughout two phases at each point 

of the medium, but we shall construct the Functions o9 state on the ba- 

sis of the thermodynamics of irreversible processes. In this way 

shall be able to de#ine every coefficient in our theory, which is not 

clear enough in that proposed by Deresiewicz and Pecker. 

Following Biot [I] , we take our physical model to consist o9 a hom- 

ogeneous, isotropic, elastic matrix whose interstices are filled with 

a compressible viscous liquid. Both, solid and liquid 9orm continuous 

(and interacting) regions and, while viscous stresses in the liquid 

are neglected, the liquid is assumed capable o9 exerting a velocity- 

-dependent friction force on the skeleton. The mathematical model con- 

sists o£ two s~/perposed, continuous phases, each £illlng separatly the 

entire space occupied by the aggregate. Thus, at each point of space 

there are two distinct elements. Each of them is characterized by its 

own displacement and stress, but by the same temperature; during a the- 

rmo-mechanical process they may interact with each other. 

It should be noted that the present treatment falls within the ge- 

neral theory of multiphase materials which, under the name "Theory o£ 

Mixtures", has been the subject o9 investigations from the standpoint 

of continuum mechanics £or over two decades 6 . However, whereas the 

purpose there has been to set down the most general formulation encom- 

passing the various phenomena, it is our aim, within the ~ramework o9 

the linear thermodynamics, to identify and demonstrate analytically 

specific aspects of the material behaviours, 
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In 1956 Biot [I] proposed a theory o£ a porous solid containing £1uid. 

In order to obtain the equations o9 motion he made use 09 the Lagrange 

equ at ions: 

(1,1) ~,~Vi/ + ~.--~£ = q i  ' ~X8~¢ i + ~ = Qi ' 

where v ( v  i )  and ~(w i )  denote the v e l o c i t i e s  o£ the s o l i d  ske leton and o£ 

the £1uid,  r e s p e c t i v e l y ;  q(q~) and Q(Qi) are the genera l ized £orces ac t -  

ing on the solid skeleton and the £luid; £inally, W k and W d denote the 

kinetic energy and the dissipation £unction given by the 9ormulae: 

(1.2) 2W k = ~IVlVl + 2~12VlW 1 + ~22WlWl , 

2W d = b(v I - ~Vl) (V I - Wl) , b > O, ( 1 . 3 )  

where 

fs + fa  ' 922 = 59 + % , = - Ca < 0 .  

Here ~s and 5£ are the masses o£ the ske le ton and the 9 l u i d ,  mespec. 

t i v e l y ,  re£er red to the u n i t  volume o£ aggregate; 912 represents  a mass 

coupling between £1uid and solidi Moreover, W d is the well-known Ray- 

leigh dissipation £unction. 

The generalized £orces q and Q are expressed as the stress gradients 

(1.4) qi = 6~ij,j ' Qi = ~,i ' 6~= - p£' 

where N~(~'j)± is the stress tensor in the solid skeleton, p is the £1u- 

id pressure and £ stands £or the porosity o£ the medium, the same 9or 

the volume as well as £or the surgace in the theory under discussion. 

By introducing (1.4) into (1.1) and using (1.2), (1.3), one obtains 

the 9ollo%~ing equations o£ motion: 

= 91 + b(v i + (' (1.5) ij,j 1+i " wi) f12{i ; ) = @-~ ' 

~,i = ~22~Ii + b(wi - Vi) + ~12{i " 

In the present paper ~ propose another theory o9 a porous elastic 

solid containing £1uid in which the mass coupling (negative in Biot's 

theory) does not exist, and the mass coegficients entering into the ki- 

netic energy have a quite new meanin G. 
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2. KINEMATIC AND PHYSICAL COMPONENTS OF THE MEDIUM 

We assume that the medium can be identified with a continuum in whi- 

ch the mathematical expectancy 09 Finding a solid or a 91uid particle 

at a given point is constant, i.e. ~ assume that the medium is stati- 

stically homogeneous. We also postulate that our medium is characteri- 

zed by two porosities: the surface porosity £A and the volume porosi- 

ty 9~ defined as Follows: 

A 

=A ' F~ = ~-2 ' 

where Ap and ~p are the surface and the volume oF pores contained, re- 

spectively, in a smooth surface A and a volume ~?. 

ConFigurations in our medium at every instant t are defined by two 

real velocity Fields: v(xi,t) and ~(xi,t). The First velocity describes 

the motion o£ the skeleton with a certain amount 09 liquid Imprisoned 

in it. The second velocity describes the motion o£ a Free Fluid. This 

situation can be explained by means oF a simple model shown in Fig. I, 

in which the shaded area represents the skeleton, 

and the dotted area the Flui imprisoned in the 

skeleton, while the hatched area corresponds to 

the Free £1uid. 

The total mass density o9 the aggregate is 

equal to the sum 

(2.2) 
Fig. 1 

The Free £1uid moving with its own velocity w has the mass density 

dePined by the relation 

(2.3) f=%q. 
To this end the density o£ the mass moving with the velocity of the 

s~eleton is equal to the diFFerence: (g - ~). 

The densities o9 mass introduced above correspond to the real velo- 

cities~ and w; we call them the kinematic components of the medium. 

Let~ denotes the volume o9 the aggregate bounded by a smooth sur- 
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£ace A ~rith the unit out\yard normal vector n(ni) 

(see Fig. 2). For our volume the momenta o£ kine- ~ i  

matic components may be written as follo~s: 

(2.4) 9-7) Zda,  .de, 
e ) 

where pS(pS) and Pf(PI) are the momenta the x 3 

skeleton with non-free fluid and o£ the £ree T 

fluid, respectively. The kinetic energy has the 
x2 form: 

(2.5) 2K =/Ce)[(~-~)VlVl + ~ WlWl]d~. Fig. 2 

In the case of physical components the appropiate momenta are: 

where 2 is the baroeentric velocity o9 the £1uid deEined by the formu- 

la 

(2.7) = gE + - g)x. 

It is easily seen that the barocentric velocity of the £1uid deals 

with the Blot's velocity o£ the fluid. In our considerations ~e make 

use o9 the kinematic components o£ the medium. 

3. FIRST LAW OF THERMODYNAMICS, PRINCIPLE OF OBJECTIVITY. 

As it was already mentioned~e assme the temperature 09 the skeleton 

and the £1uid to be the same at every point o9 the medium under consi- 

deration. ~ assmume that the medium is isotropic and statistically ho- 

mogeneous. In such a medium we single out a certain volume 52, large in 

the comparison ~ith the dimenaions oE the pores, bounded by a smooth 

surEace A oriented outwards by a normal unit vector ~. The action o9 

the environment on the chosen volume in marked in the Fig.3, where ~s 

and ~ are the vectors oE internal forces applied to the skeleton and 

the £1uid, respectively, ~ is the vector of the heat flux, ~.is the ve- 

ctor o9 the body Eorce. The energy balance in the chosen volume, which 

expresses the first law of thermodynamics, can be written as 9ollows: 
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he n e  n o  ro 

the previous section (2.5), U stands for TS~~V l dA~i 
the internal energy, P denotes the mecha- ~ ' ~ ' "  I ~ ~  ~ 

nical power, and Q is the heat. 

The mechanical po~ver is equal to the ~ 

sum of the body forces power and that of x3~~! > 
the external forces, i.e. 

(3.2) P = !~)(, - ~)XlVld~ +~XlWld~Z + ~x I Fig. 3 

~here the surface forces define the Cauchy's 9orrm/lae: 

(3.3) T'Sl = ~'~jnj , Tf'l = 6n.i ; (6"ij) = (~ i j ) '  6~= -fA p ' 

with symmetric stress tensor in the skeleton. 

The internal energy, which is the attribute o£ the mass, express the 

tel ation 

~) 

The non-mechanical power 6 is a 9unction of the heat £1ux q per sur- 

face A and of the heat f lux transported by the mass of free f lu id  ~low- 

ing through the surface A. The mechanical po~r is calculated at cons- 

tent entropy, ~nereas the non-mechanical power must be evaluated at the 

constant mass (constant volume) contained in the volume ~ . In accorda- 

nce with our assumptions we find 

(3.5) Q = - /(#)qlnl dA +~ ~c~,(w I - Vl)~nldA = 

= - (/e)[ql,l - ~%~(Wl - Vl) ~,l]d~Z' 
where 09# is the specific heat o£ the ~luid per unit mass at constant 

volume and 

(3.6) @--T-T 
o 

is the temperature difference with T o as the reference temperature or, 

in other words, the temperatu~ o~ the natural state of the medium. 

AFter a few regular transformation the equation of the first law 

shall take a form of an integral 
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(~.7) ,/.~(f, ~, vi, ~ ,  ~ i ~ . ~ ,  ~ i ; ,~)d~ = o. 
where 

), # =  (3 .8)  E l .  i = ~.(vi, j + v j ,  i ~"l,1 
is the strain-rate tensor For small deformations of the skeleton and 

the small volumetric change of the fluid, respectively. 

The medium is assumed to be isotropic, the volume has been chosen 

in an arbitrary manner, and For this reason the integrant in the equa- 

lity (3.7) must be equal to zero at every point. Thus obtained equa- 

tion is the local Form of the fir gt la\v of thermodynamics, e.i. 

+ 

÷ (6"1~ g l ~  ~ - # )  - [q~,~ - ~ c ~ / " l  - v l ) . ,? ; , l ] ,  

~#nere U I is the internal energy per unit volume defined by the Formula 

Let us nov require, following the principle of objectivity, that the 

expression (3.9) be invariant ~rith respect to the rigid motion o9 the 

medium. To this effect ~ consider a rectangular uniFoz~m motion 

(3.11) v--4~v 4- a ,  

~nere ~ is an arbitrary constant velocity vector. We assume that this 

motion does not lead to any changes of the quantities entering in in 

the first law of thermodynamics (3.9). In consequence we arrive at the 

equ at ions • 

- [ % ~ , ~  + ( ~ - p X l  - (~ - ? ) ÷ l ]  - ( ~ , l  + { * l  - ~ % )  = o, 

which should be satisfied For every value of a at every ponit of the 

medium. Thus, we obtain two local equations of the mass continuity: 

(~.~4) a (~_  ~ ) .  [(s - ~)v~],~ = ~* ~ .  (~.~) = -s  • ~t ' 9 t  ,k ' 

~here ~is a Function 09 £1uid sources caused by t~e di~i~rence bet~en 
2 
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tWO 9ields o9 velocities, In other ~ords, the ~nction ~-- ~/~v),t] 
and satisfies the following evolution equation: 

(3.~5) ~* = o, ~t + [-'e*('k - vk)],k 
which seems to be natural one. 

Introducing (3.14) into (3.13) we arrive to the ~ollowing equations 

o9 motion: 
I 
~'(~i + F. ~ij,j + (~ " [)xi = (~ - {)÷i + ~ - vi) 

(s.16) P 

~'i-" ~I ~*('i - vi) Fi ' -.i + ; ~xi -- + 

where F(Fi) is the £orce of interaction between two components ot the 

medium in consequence o£ their relative motion. 

When introducing (3.14) and (3.16) into (3.9), we arrive at the lo- 

cal 9orm of the first law oF thermodynamics 

(3.17) 61 = (~ij g i j  + 5"~,) - [qk,k -[c~(wk - vk) t k ]  + Fk(Vk " vk)" 

The equation (3.17) informs us that changes o9 internal energy are 

caused by the work done by the external 9orces (the Eirst bracket), by 

the heat conducted and transported (the second bracket), and by the in- 

ternal £riction due to the relative motion between the skeleton and 

91uid (the third bracket). 

4. SECOND LAW OF THEI~MODYNAMICS, DARCY'S LAW, HEAT CONDUCTION EQUATION. 

For the time being we omit the souces o9 entropy (caused by the in- 

ternal 9fiction), ~hich is marked by the asterisk, and we ~Tite the 

part o£ the entropy corresponding to the ~low o~ heat Q, i.e. 

(4.~) ~" = f ~ f ~cJ"k - Vk.) ~.k 

The sources manii~est themselves by their inl~luence on the tempera- 

ture. The entropy exchange with the surronding o2 the volume ~ by the 

way oi' heat is equal to the integral 

= -  ] - - 

YR) T 

and the irreversible part: 
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(4.3> - : : " T 2  . . . . . .  d ~  . 

The changes of entropy (4.3) must locally satisfy the Causius-Duh- 

em inequality, i.e. 

- [% - ~ ( ~  - v~) ~3 8~ > o, 
~ich implies the heat conduction law 

(4.4) qi = -~E,i + ~%~(~ vi)~; ~ >o 
Just obtained law includes the influence of the heat transport cau- 

sed by the relative motion of the free fluid. 

The total rate oF changes oF the entropy has to satisfy the relation 

;i = S- ;e>O, 

which implies the local inequality 

(4.5) ~i~ = ~I + [qk T 

Now, we make use o£ the First law oF thermodynamics (3.17) and re- 

~vrite our inequality as ~ollovs. 

(4.6) T~ - ~ .  (~ij g i j  + ~ )  + Fk(~k - vx) + 

_ [ q k -  ~ c ~ , ( ~ -  - ~~k)~.~;~ > o. 
T 

We introduce the Helmholtz free energy F I = F I ( ~ i j , ~ , T )  making use 

of Legendre transformation 

(4.7) F I = u I - TS I, 

which transforms our inequality in the Form depending on the Free ener- 

gy. This last Form permits to constat that it is always satisfied, if 

it holds for the Following equalities: 

(4.~) ~ j  = ~ - i j ,  ~-- ~ , ,  ~ -- - ~ , , , ,  

and for  one inequal i ty :  

(4.~) F~Cw~ v~) q~ - fc~(wkT - vk)~ . . . .  , . _~ > ~.~ o. 

Its first term is related to the internal heat sources caused by the 

Friction between the Fluid and skeleton due to the relative motion. 

The second therm was already discussed and it implies the heat conduc- 

tion law (4.4). In order to simplify our considerations ~e suppose that 

evry term has to satisfy the inequality independently. In the oposite 

case one might be obtained some secondary e~fects as, For example, a 

generalization oF so-called Du£our or Sorer eFFects. Taking into ac- 
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count our simplification u~ write 

(4.10) Fk(V k -v~) _> O. 

Consequently ~e can ~vrite 
N 

F. = b n(w i - v i) ; b >_ O. 1 n 

Therefore, the linear relation has the form 

44.11) F i = b(~ - vi). 

When omitting body and inertia Forces, as well as, the thermal ef- 

Fects in the second of equations (3.16), we arrive at the relation 

(4.12) F~ -- ~,i =b(~-vi), 
known as the Darcy's law. The coefficient b corresponds here to the 

Flow resistance. It is obvious that the validity of the relation (4.12) 

is limited by suitable I{eynol@s number. 

The free enrgy is a scalar Function; so it must be a Function o£ 

the invariants of strain state and temperature. Our main aim is to pre- 

sent a theory as simple as possible. Therefore, we take into account 

only t~) First invariants o£ the strain state and write: 
I 

(4.13) F 1 = F1(zl, D2, e, T); 11 = &~k =6, D 2 = I~-~:I, 

I2 =£ij Eij - 

We expend the Free energy (4.13) into a Taylor series in the vinci- 

nity of the natural state ~ith respect to the kinematic variables ne s- 

lecting terms of hi/her order than squares. Next, taking into account 

the Formulae 44.8) ~ write the relations linking the stresses and 

strains in the medium: 

"2F 1 

~ere "~2F I (O,O,O,T) 

K = :.AT2 ......... -- the moduli of the skeleton volumetric de- 
Format ion; 

"~2F I (O,0,O,T) 
L = ~"~r1~' ~ " : - the coupling coefficient of the skeleton 

and Fluid volumetric deformations; 
(4.15) 9FI (O,O,O,T) 

N = ~D 2 - the shear moduli of the skeleton; 

9 2 F 1  ( O , O , O , T )  

M = " . . . . . . . . . .  - t h e  m o d u l i  o £  t h e  F l u i d  v o l u m e t r i c  d e F o r -  
~e mation. 

Let us suppose that the aggregate has the possibility of £ree ther- 

mal deformations and is submitted to the action of a temperature field 
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only. In such a case 6~.. = O, ~= O, and the relations (4.14), with ij 

known thermal dilatations: 

= 3~, e T = 3 ~', E T 

where c~ s and o#£ are the coefficients of the linear thermal expansions 

o£ the skeleton and £1uid, respectively, permit to write: 

(4.16) 

- ~ = 3(L4 s + M~e)~ 

The first term o£ the series, i.e. FI(O,0,0,T) is determined From 

the relation known in thermodynamics: 

where c 2 = C6s + ce£ is the sum o£ the specific heats o£ the components 

o£ the medium per unit volume. The integration o£ above relation ~ith 

respect to temperature leads to the evaluation o9 Fff(O,0,O,T): 
LT rTc~ 

( 4 . 1 7 )  = -  
'# 

We have already interpreted all coefficients in the Function of free 

energy and now we can write all introduced Functions o~ state in the 

evident fo~m. ~ollowing the regular practice we arrive to the last so- 

ught equation, namely, to the equation of heat conduction: 

c~ s c~£ - co6 
% = ' 

Mnere 

(4.19) W o = b(w k - Vk)(W k - v k) 

is the source £unction. 
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